决策树与随机森林,这2个概念好像经常会在一起被提起。对于小白的我来说,也是很懵。
于是,我找了博文,并请教了周边的大神。
得出一点通俗且易理解的小结论,在这里记录一下:
- 决策树只有一棵树,随机森林有多棵树。
- 决策树在生成的过程中,会给他设定前剪枝或者后剪枝,从而导致树被修剪。而随机森林由于有多棵树,也不会被修剪。
在这里,我们将提供两个直观的原因,即随机森林优于单一决策树。
1、特征空间中的分辨率更高树木未被修剪。虽然像CART这样的单个决策树经常被修剪,但随机林的树完全成长并且未经过修剪,因此,自然地,特征空间被分成更多和更小的区域。
2、树木多种多样。在随机样本上学习每个随机林的树,并且在每个节点处,考虑用于分裂的随机特征集。
(引用博文:https://cloud.tencent.com/developer/news/344165,侵删)
另附上决策树与随机森林的解释:
https://www.cnblogs.com/fionacai/p/5894142.html