有了决策树,为什么还需要随机森林?

决策树与随机森林,这2个概念好像经常会在一起被提起。对于小白的我来说,也是很懵。
于是,我找了博文,并请教了周边的大神。
得出一点通俗且易理解的小结论,在这里记录一下:

  1. 决策树只有一棵树,随机森林有多棵树。
  2. 决策树在生成的过程中,会给他设定前剪枝或者后剪枝,从而导致树被修剪。而随机森林由于有多棵树,也不会被修剪。

在这里,我们将提供两个直观的原因,即随机森林优于单一决策树。
1、特征空间中的分辨率更高树木未被修剪。虽然像CART这样的单个决策树经常被修剪,但随机林的树完全成长并且未经过修剪,因此,自然地,特征空间被分成更多和更小的区域。
2、树木多种多样。在随机样本上学习每个随机林的树,并且在每个节点处,考虑用于分裂的随机特征集。
(引用博文:https://cloud.tencent.com/developer/news/344165,侵删)

另附上决策树与随机森林的解释:
https://www.cnblogs.com/fionacai/p/5894142.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值