10 月 23 日,阿里旗下的夸克 App 正式上线“对话助手”。

从界面上看,它像是塞进了一个“豆包”;但从体验上看,它更像是“中国的 ChatGPT”。
这次更新的背后,不只是夸克的产品升级,更是 阿里 Qwen 系列模型的一次重要闭环验证。夸克成了首个大规模落地 Qwen 闭源模型的消费级入口。
一、从“搜索框”到“智能体”:夸克的转向
打开夸克 App 首页,你会看到搜索框内多了一个“助手”按钮。点进去,界面简洁到极致:
一个输入框、一段提示语——“试着问我任何问题”。
但当你真正使用几分钟后,会发现它并非只是回答问题。
它在执行任务:
-
你可以说“帮我写一段论文摘要”,它会生成一段符合学术口径的文字;
-
你问“上海明天天气”,它会直接调出结果而非跳转链接;
-
你甚至输入“生成一张 PPT 提纲”,它会用结构化列表返回。
这正是典型的 Agent 化(智能体化)产品形态:
不再回答,而是完成。
二、夸克背后的 Qwen 模型:从开源到“闭源增强版”
熟悉阿里大模型体系的人都知道,Qwen(通义千问)系列分为两条线:
-
开源线:如 Qwen1.5、Qwen2、Qwen2.5,模型参数开放,面向开发者;
-
闭源线:如 Qwen-VL、Qwen-Max、Qwen-Lite,面向自家产品(阿里云、钉钉、夸克、淘宝问答等)。
此次夸克“对话助手”使用的版本,实测响应速度、指令理解和记忆延续性均优于 Qwen2.5-Max,疑似为 “Qwen-2.5C” 或 “Qwen-3 内测闭源版”。
性能上,Qwen 系列的优势在于:
| 能力维度 | Qwen2.5 开源版 | 夸克闭源版(实测) |
|---|---|---|
| 中文理解 | 优秀 | 极佳(近人类口语) |
| 指令遵循 | 稍有歧义 | 高精度执行 |
| 多轮对话 | 可延续 6~8 轮 | 可延续 15+ 轮 |
| 生成速度 | 1.2s 首字 | 0.8s 首字 |
| 上下文一致性 | 偶有漂移 | 显著提升 |
更关键的是,闭源版具备 对话上下文的语义压缩与意图分层机制,即便多轮聊天也不会出现“遗忘”或“偏题”。
三、夸克的“对话助手”体验:ChatGPT + 搜索融合体
如果你熟悉 ChatGPT,你会立刻发现夸克的“对话助手”走的是 混合路径(Hybrid Chat):
flowchart TD
A[用户提问] --> B[语义理解层 (Qwen)]
B --> C1[调用夸克搜索引擎]
B --> C2[调用模型生成接口]
C1 --> D[知识增强响应]
C2 --> D
D --> E[自然语言输出 + 可点选来源]
这意味着:
-
模型不是“盲答”,而是融合了搜索结果;
-
回答会引用夸克自身的索引内容;
-
若问题涉及事实性信息,会展示参考链接。
举例实测:
Q:请推荐几本关于金融科技的书。
A:推荐以下书籍:《FinTech金融科技》《数字货币革命》《银行4.0》,此外夸克读书中也有免费章节试读 → [点此查看]
这就是 模型 + 垂直资源融合的优势:ChatGPT 能回答,夸克能落地。
四、背后的技术关键:Qwen 的“语义执行引擎”
夸克助手能做到“既懂问题又能行动”,关键在于阿里为 Qwen 系列构建的“语义执行引擎”。
它包含三个核心模块:
-
Semantic Dispatcher(语义分发器)
根据用户意图动态调用模型、插件或本地服务。
例如,“查天气”→天气 API,“写邮件”→语言模型生成。 -
Task Memory(任务记忆)
类似 LangGraph 的 MemoryNode,将历史上下文压缩为可调用的任务状态。 -
Adaptive Compression(动态压缩)
对多轮上下文进行语义压缩,使对话不会“遗忘”,同时提升响应速度。
这使得夸克的助手并非纯语言模型,而是一个具备认知记忆与函数调用能力的轻量级 执行型智能体。
五、为什么夸克能率先落地 Qwen 闭源模型?
阿里系有多个应用(钉钉、天猫精灵、淘宝问答)都在接入 Qwen,但夸克被选中率先试点,原因有三:
-
轻量与高频场景:
夸克的搜索与问答是自然切入口,能收集最真实的问题分布。 -
教育与知识场景数据:
夸克用户在论文、资料、课程搜索上极集中,适合模型做“知识增强训练”。 -
算法团队直连阿里云 Qwen Core:
夸克 NLP 团队与 Qwen 研发组共享底层 pipeline,可快速调优。
因此,“对话助手”既是产品升级,也是 Qwen 闭源模型的一次 A/B 实验场。
六、中国版 ChatGPT 的雏形?
有人说,夸克的“对话助手”是“豆包 + ChatGPT”的混合体。
但更准确的说法是——它代表了 国产模型的产品化拐点。
过去半年,中国大模型赛道经历了三个阶段:
| 阶段 | 特征 | 代表产品 |
|---|---|---|
| 1. 模型开放 | 比参数、跑基准 | DeepSeek、Qwen2.5 |
| 2. 能力对齐 | 加 RAG、插件 | 文心、智谱、Yi-Large |
| 3. 产品化落地 | 聊天助手进入主流 | 夸克、豆包、Kimi |
夸克的尝试,是第三阶段的典型:
让 AI 变得可用、可感知,而不是“遥远的模型服务”。
七、总结:大模型的拐点,不是参数,而是体验
夸克“对话助手”最值得关注的,不是它背后用了哪一版 Qwen,而是 它让普通人第一次感受到大模型真正能帮上忙。
在搜索里生成摘要、在聊天中执行任务、在问题后提供上下文链接——这些能力的出现,标志着中国大模型正式进入 “实用主义时代”。
未来,你可能不会关心它用的模型叫什么版本。
你只会说:
“我用夸克的 AI,每天都在帮我干活。”
📍博主点评:
Qwen 选择夸克,不只是落地,而是验证一个命题——当大模型进入“任务执行阶段”,真正的竞争将不在算力,而在交互体验。
接下来,我们要看的不是谁的模型更大,而是谁的智能体更“懂你”。
如果你也想体验国产 ChatGPT 的最新形态,
👉 打开夸克 App,右滑进入“对话助手”,你会惊讶:它真的能干活了。
1539

被折叠的 条评论
为什么被折叠?



