强化学习之基本公式

强化学习通过收获估计价值,公式如G(S)=Σk=0∞rt+k∗γk,状态价值函数V(S)和Q(S,A)分别代表状态与状态-动作对的期望收获。贝尔曼方程Vπ(S)=E[R(S)+Vπ(St+1)]描述了状态价值,而状态价值也可由动作价值表示:Vπ(S)=a∑π(a∣s)Qπ(s,a)。" 130895719,18148785,Python实现混合排序:数字与字符串一起排序,"['Python编程', '算法', '数据处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

强化学习

公式理解

强化学习中使用收获做为估计价值的指标,这可以类比与现实世界中如何在一顿自助餐中吃回本,如何在一段时间中消耗最低等问题,为了获得最优结果,我们使用计算机进行大量运算。这就是强化学习。
推想(复杂,结果最优?只是最优控制吧。)

状态S的收获

  • G ( S ) = r ( s , a ) + γ r ( s t + 1 , a t + 1 ) + . . . . . . G(S)=r(s,a)+γr(s_{t+1},a_{t+1})+...... G(S)=r(s,a)+γr(st+1,at+1)+......
  • 这就相当于 G ( S ) = Σ k = 0 ∞ r t + k ∗ γ k G(S)=Σ_{k=0}^{∞}r_{t+k}*γ^{k} G(S)=Σk=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值