Stable Diffusion Web UI基础入门之常用参数

在之前的文章中我们介绍了,Stable Diffusion的基础知识和使用工具———Stable Diffusion AI入门介绍。这篇文档带大家了解一下Stable Diffusion Web UI的常用参数,在日常绘图中如何使用。

我们知道在Stable Diffusion Web UI(文中Web UI代替)中绘图,基本的使用方法很简单,只需选择合适的模型,然后输入正向提示词、反向提示词即可。不过,如果要得到更细致的结果,就需要对各个参数的设置都有所了解。下面我们就来介绍一下常用的参数,如下图Web UI中的配置:

常用参数配置

Sampling Method(采样方法)

为了生成图像,Stable Diffusion会先在潜空间中生成一张随机的噪声图,然后再对这张图片多次去噪,最后得到一张正常的图片,如下图所示。这个去噪的过程被称为采样(sampling),而采样方法(sampler/sampling method)则是这个过程中使用的方法。

1-1

可选的参数有很多种,
1-2

经典的ODE求解器(Old-School ODE solvers)

常微分方程的全称是Ordinary Differential Equation,‌简记为ODE。

Euler:欧拉采样方法。
Henu:改进的或修改过的欧拉方法(即,显式的梯形规则)。
LMS:线性多步法,与欧拉采样器速度相仿,但是更准确。

Euler、Henu、LMS采样方法比较简单,是经典的常微分方程(ODE)求解器。其中Euler是最简单的求解器,Henu比Euler更准确但是也更慢,LMS(Linear Multi-Step method,线性多步法)速度与Euler相同,但LMS号称更准确。

祖先采样方法(Ancestral samplers)

有一些取样器的名字中带有一个字母“a”​,这表明它们是祖先采样方法(ancestral sampler)。

祖先采样方法属于随机采样方法,它们会在每个采样步骤中添加随机噪声,使结果具有一定的随机性,从而探索不同的可能性。
需要说明的是,还有一些其他方法也是随机采样,尽管它们的名字中没有“a”​。

使用祖先采样方法可以通过较少的步骤产生多样化的结果,但缺点是图像不会收敛,随着迭代步数的增加,图像将不断变化,生成的图像可能更嘈杂且不真实。而如果使用Euler等收敛采样方法,一定步数之后图像的变化会逐渐变小,直到趋于稳定。

相关的采样方法如下:
● Euler a。
● DPM2 a。
● DPM++ 2S a。
● DPM++ 2S a Karra。

Karras版本方法

带有“Karras”字样的采样方法使用了泰罗·卡拉斯(Tero Karras)等人的论文中推荐的噪声规则,与默认的规则相比,Karras的规则在开始时噪声较多,在后期噪声较少,据他们研究,这样的规则可以提高图像质量。

1-3

相关的采样方法如下:
● LMS Karras。
● DPM2 Karras。
● DPM2 a Karras。
● DPM++ 2S a Karras。
● DPM++ 2M Karras。
● DPM++ SDE Karras

DDIM和PLMS

DDIM和PLMSDDIM(Denoising Diffusion Implicit Model,去噪扩散隐式模型)和PLMS(Pseudo Linear Multi-Stepmethod,伪线性多步法)是第一版Stable Diffusion中就附带的采样方法,其中DDIM是最早为扩散模型设计的采样方法之一,PLMS则比DDIM更新、更快。

当前这两种采样方法都不再广泛使用。

DPM系列

DPM(

### Stable Diffusion WebUI入门教程 #### 一、下载与安装 为了开始使用Stable Diffusion WebUI (AUTOMATIC1111),需先完成软件的下载和安装过程。该工具不仅支持常见的NVIDIA GPU,还能够在Intel CPU以及集成/独立GPU上运行,这得益于Intel分发的OpenVINO工具包的支持[^2]。 #### 二、初步探索界面布局 启动程序后,用户会面对一个直观而复杂的图形化界面。此界面专为满足高级用户的图像生成需求所设计,提供了一系列强大且灵活的功能选项。对于初学者而言,建议按照官方提供的详细使用指南逐步学习各个部分的操作方式[^1]。 #### 三、创建第一个项目 当环境搭建完毕之后,就可以尝试创建自己的首个作品了。此时应该参照具体的实例来练习不同参数下的效果变化,从而加深对各项设定的理解程度。例如,在处理非首次生成的情况下启用色彩校正功能可以帮助改善颜色表现力,防止出现过度褪色的情况[^4]。 #### 四、深入挖掘特性 随着技能水平逐渐提高,可以进一步探究更多进阶特性和优化策略。比如调整采样器类型、迭代次数等核心参数;利用LoRA模型扩展创造力边界;或是借助第三方插件实现个性化定制等功能。这些都将有助于提升最终产出的质量并开拓新的创作可能性。 ```python # Python脚本用于自动化某些任务或批量处理图片 import gradio as gd from modules import script_callbacks, shared def custom_function(image_input): # 自定义逻辑... pass script_callbacks.on_after_component(custom_function) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值