引言
在读研期间而然机会,我跟局部秩结缘了。为了不至于忘记这个很有趣的特征提取算子,故有此文章。
根据我的调研,局部秩从被提出之后,就没有受到太多的关注。可能是它跟其他的算子太像了,以至于大家对它没什么兴趣。但是一旦慢慢的体会,其实还是很有用的。甚至可以再创新再发展,这个就是后话,不多说了。本文主要还是集中于基本原理的讨论,和一些简单的应用。权当抛砖引玉了,如果大家能在这里探讨一下,也令我蓬荜生辉不少。好了,不多说了。直接进入正题。
局部秩
定义:以图像的某个像素为中心的邻域,参考其邻域的其他像素值,如果比这个像素值低(或高),那么中心像素的秩就加1。遍历所有的邻域像素,就得到这个像素的局部秩。(注:详细内容可以参考引用1的文章。)
这个定义非常的有意思,我们可以看到,它只是对中心像素和邻域像素的强度做对比,没有参考强度具体是多少,这也就使得它对于整体图像的对比度变化有一定的抗性。
然而,现实的情况是很残酷的,我们不可能得到具有均匀光照的图像,所以,对于图像存在非均匀光照的情况,就显得有点力不从心了。
一个可行的(至少看似可行)方法时采用局部自适应阈值结合改进的局部秩方法,来克服这种非均匀光照和噪声带来的影响。
定义:以图像的某个像素为中心的邻域,参考其邻域的其他像素值,如果比这个像素值低 deta强度(或高deta强度),那么中心像素的秩就加1。遍历所有的邻域像素,就得到这个像素的局部秩。
在这个定义中,deta是我们取的阈值,自适应阈值的方法就是,求取邻域的灰度均值作为阈值。这样,一方面是可以排除一些噪声的干扰,另一方面,则可以对非均匀光照有一定的(看似)不变性。
在这里,阈值可以是正,也可以是负。他们得到的结果看起来就像是互补的一样,这就更增添了其意义。
简单的结果
下面这张图是对常用的图像做的变换。(从论文中直接copy过来)
引用
[1] http://www.sciencedirect.com/science/article/pii/S0020025515004879
如果大家有什么想法可以探讨,英文文章我已经下载,可以来索取。QQ:896869167