损失函数的作用:
1.计算实际输出与目标输出之间的差距
2.为我们更新数据输出提供一定依据(反向传播),grand
我们先简单了解两个损失函数:
L1Loss :
参数除了最后一个前面的都已经弃用了
这里有例子 :
运行结果如下
如果reduction这个参数设置为‘sum’,则输出为2
MSELoss平方差
运行结果:
CrossEntropyLoss交叉熵损失
1.1019=-0.2+ln(exp(0.1)+exp(0.2)+exp(0.3))
计算完之后就应该根据梯度通过优化器进行模型参数调整了,即实现机器学习的核心
下面是一个优化器的案例:(CIFAR10+vgg16+CrossEntropyLoss+SGD)
import torch
import torchvision
from torch import nn
from torch import optim
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear,Sequential
from torch.utils.data import DataLoader
#导入数据
dataset2 = torchvision.datasets.CIFAR10("dataset2",transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset2,batch_size=1)
#搭建模型
class qiqi(nn.Module):
def __init__(self):
super(qiqi, self).__init__()
self.model1=Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x=self.model1(x)
return x
#引入交叉熵损失函数
loss = nn.CrossEntropyLoss()
#引入优化器
optim=torch.optim.SGD(qq.parameters(),lr=0.01)
qq=qiqi()
for epoch in range(20): #最外面这一层是学习的次数
running_loss=0.0
for data in dataloader: #针对dataloader里面一batch_size的数据学习一次
imgs,targets=data #如果dataloader里面只有一个数据,则针对这个数据计算参数
outputs=qq(imgs)
result_loss=loss(outputs,targets) #计算输出和目标之间的差,计入result_loss
optim.zero_grad() #优化器中每一个梯度的参数清零
result_loss.backward() #反向传播,求出每一个节点的梯度
optim.step() #对每一个参数进行调优
running_loss=running_loss+result_loss #记录叠加的损失值
print(running_loss)
在运行的时候可以看出每一个参数的在每一遍学习中变化