损失函数(Loss Function)和优化损失函数(Optimization)

https://blog.csdn.net/qian2213762498/article/details/82832163

损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。
对单个例子的多分类SVM损失函数:
损失函数

除了正确类以外的所有类别得分相加,如果正确类别得分比错误类别得分高很多(高出某个临界值,这里应该是1),则这张图像的损失函数为0;如果错误类别分数比正确类别分数高,则为损失函数为两者的差值。也称合页损失函数。
右上角的图,x轴为训练集中第i张图像通过分类器在正确类别标签上得到的分数,y轴表示loss。随着syi的增大,损失函数越来越小,超过某个临界值就变为0。
在这里插入图片描述
整个训练集的损失函数为单张图像的损失函数相加。
损失函数计算实例

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值