HDU 4427 Math Magic【dp+优化+滚动数组】【好题】

17 篇文章 0 订阅
12 篇文章 0 订阅

Math Magic

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2084    Accepted Submission(s): 692


Problem Description
Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).
In class, I raised a new idea: “how to calculate the LCM of K numbers”. It's also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...
After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too.
If we know three parameters N, M, K, and two equations:
1. SUM (A 1, A 2, ..., A i, A i+1,..., A K) = N
2. LCM (A 1, A 2, ..., A i, A i+1,..., A K) = M
Can you calculate how many kinds of solutions are there for A i (A i are all positive numbers).
I began to roll cold sweat but teacher just smiled and smiled. 
Can you solve this problem in 1 minute?
 

Input
There are multiple test cases.
Each test case contains three integers N, M, K. (1 <= N, M <= 1,000, 1 <= K <= 100)
 

Output
For each test case, output an integer indicating the number of solution modulo 1,000,000,007(10 9 + 7).
You can get more details in the sample and hint below.
 

Sample Input
  
  
4 2 2 3 2 2
 

Sample Output
  
  
1 2
Hint
The first test case: the only solution is (2, 2). The second test case: the solution are (1, 2) and (2, 1).
 

Source


dp[i][j][k]。表示长度为i。和为j。最小公倍数为k的方法数。设a为解的第i+1个数。

那么状态转移就为

dp[i+1][j+a][lcm(a,k)]+=dp[i][j][k]。lcm为最大公倍数。

因为开不了那么大的数组,因此要用滚动数组

为了节约时间先预处理出1000以内任意两数的最小公倍数

同时在循环的时候要注意剪枝(if (dp[(j-1)&1][i][last] == 0) continue;//如果上一状态为0则不用计算上一步)


#include<iostream>	
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<bitset>
#include<numeric>
#include<vector>
#include<string>
#include<iterator>
#include<cstring>
#include<functional>
#define INF 0x3f3f3f3f
#define ms(a,b) memset(a,b,sizeof(a))
using namespace std;

const int maxn = 10010;
const int mod = 1e9 + 7;
const double pi = acos(-1.0);

typedef pair<int, int> P;
typedef long long ll;
typedef unsigned long long ull;

int gcd(int a, int b)
{
	return b == 0 ? a : gcd(b, a % b);
}

int lcm(int a, int b)
{
	return a / gcd(a, b) * b;
}

int N, M, n;
int dp[2][1000 + 5][1000 + 5];
int LCM[1000 + 5][1000 + 5];
int fac[1000 + 5];

int main()
{
	for (int i = 1; i <= 1000; i++)
	{
		for (int j = i; j <= 1000; j++)
		{
			LCM[i][j] = LCM[j][i] = lcm(i, j);
		}
	}
 	while (scanf("%d %d %d", &N, &M, &n) != EOF)
	{
		int cnt = 0;
		for (int i = 1; i <= M; i++)
		{
			if (M%i == 0) fac[cnt++] = i;
		}

		ms(dp, 0);

		for (int i = 0; i < cnt; i++)
		{
			dp[0][fac[i]][fac[i]] = 1;
		}

		for (int j = 1; j < n; j++)  //当前选的数  从j推j+1 故只需要推到n-1
		{
			ms(dp[j & 1], 0);
			for (int i = j; i <= N; i++)//枚举和 j最小为1所以和最小只可能为1
			{
				for (int k = 0; k < cnt; k++)//枚举上一状态公倍数
				{
					int last = fac[k];
					if (dp[(j-1)&1][i][last] == 0)	continue;//如果上一状态为0则不用计算上一步
					for (int p = 0; p < cnt; p++)//枚举公因子	
					{
						int cur = fac[p];
						if (i+cur<=N)//保证i+cur在范围内
							dp[j & 1][i + cur][LCM[last][cur]] = (dp[j & 1][i + cur][LCM[last][cur]] + dp[(j-1)&1][i][last]) % 1000000007;
					}
				}
			}
		}
		printf("%d\n", dp[(n-1)& 1][N][M]);
	}
}




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值