PTA--7-14 列车厢调度 (25分)

这个题其实和 -出栈序列的合法性- 这个题类似,他们俩个用的都是同一个方法

#include<bits/stdc++.h>
using namespace std;

int main()
{  //总共三种操作,1--从1号轨道到2号轨道
  //2--从1号轨道到3号轨道
  //3--从3号轨道到2号轨道
    stack<char>sta;   //存字符
    char s1[50],s2[50];
    vector<int>vec;
    scanf("%s%s",s1,s2);
    int pos1=0,pos2=0;  //分别标记s1和s2
    int len=strlen(s1);
    while(1)
    { // 如果字符相等则直接从1号轨道到2号轨道
        if(s1[pos1]==s2[pos2]&&pos1<len&&pos2<len)
        {
            vec.push_back(1);
            pos1++;
            pos2++;
        }
        else if(!sta.empty()&&s2[pos2]==sta.top())
        {  //如果和栈顶相等,那么就从3号轨道到2号轨道
            sta.pop();
            vec.push_back(3);
            pos2++;
        }
        else
        {     //否则就加入到栈,代表从1号轨道移动到3号轨道
            if(pos1>=len)break;
            sta.push(s1[pos1++]);
            vec.push_back(2);
        }
    }
    if(sta.empty())
    {
        for(int i=0; i<vec.size(); i++)
        {
            if(vec[i]==1)
            {
                printf("1->2\n");
            }
            else if(vec[i]==2)
            {
                printf("1->3\n");
            }
            else if(vec[i]==3)
            {
                printf("3->2\n");
            }
        }
    }
    else
    {
         printf("Are you kidding me?\n");
    }
    return 0;
}

### PTA 调度算法实现 #### 问题背景 PTA 调度问题是经典的计算机科学问题之一,通常涉及如何通过有限数量的平行轨道对车进行重新排。该问题的核心在于设计一种高效的调度策略,使得车能够按照指定的目标顺序从出口离开。 #### 算法思路析 为了满足题目中的需求——即让车按特定顺序(如递增或递减)从出口离开,可以采用 **动态规划 + 单调栈/队** 的方式解决此问题。具体来说: - 每条平行轨道可视为一个单调序存储器。 - 当新车到达时,尝试将其放置到已有的某条轨道上,或者开辟一条新的轨道。 - 如果当前车无法加入任何现有轨道,则需新增加一条轨道以容纳它。 这种逻辑可以通过维护一组单调递减(或递增)的子序来模拟多条轨道的行为[^1]。 #### 动态规划与优化 对于大规模输入情况下的性能瓶颈问题,可通过引入二查找技术加速寻找适合插入的位置过程。例如,在更新过程中利用 `std::lower_bound` 函数快速定位目标位置从而减少不必要的线性扫描次数[^2]。 以下是基于上述原理的一个C++实现版本: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int main(){ int n; cin >> n; //读取火车总数 vector<int> trains(n); for(auto &t :trains){ cin>>t;//依次读入各辆火车编号 } vector<int> tails; //记录每条轨道最后一个车厢号码(相当于dp数组) for(const auto& t:trains){ // 使用二查找找到第一个大于等于当前火车号的位置 auto it = lower_bound(tails.begin(),tails.end(),t,greater<>()); if(it==tails.end()){ tails.push_back(t); //如果没有合适位置则新开辟一条轨道 } else{ *it=t; //否则替换掉对应位置上的较大值保持最小化原则 } } cout<<tails.size()<<endl; //最终结果为所需最少轨道数 return 0; } ``` #### 关键点解释 1. 上述程序采用了贪心的思想配合二搜索技巧实现了高效求解。 2. 时间复杂度主要取决于两部:一是外层循环遍历所有火车耗时O(N),二是内部执行二查找操作平均时间成本约为O(logM)(其中M表示最大可能使用的轨道数目)。因此整体效率较高,适用于处理较大的数据规模场景下[^3]。 #### 特殊案例说明 考虑下面这样一个例子: 假设初始进入次序为 `{5,4,3,2,1}` ,期望输出结果应为 `1` 条轨道即可完成整个调度流程;而如果是相反方向排序比如 `{1,2,3,4,5}`, 那么理论上就需要准备多达五条独立路径才能达成目的[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值