KMeans等其他聚类算法

KMeans算法是一种经典的聚类方法,最早由Stuart Lloyd在1957年提出,并在1982年由J. MacQueen推广和普及。虽然KMeans已经有几十年的历史,但它依然是数据挖掘和机器学习领域中最常用的聚类算法之一。

数学原理

KMeans算法的目标是将数据集分成(k)个簇,每个簇的中心(质心)是该簇中所有点的平均值。算法的步骤如下:

  1. 初始化:随机选择(k)个初始质心。

  2. 分配数据点:将每个数据点分配到距离最近的质心。

  3. 更新质心:重新计算每个簇的质心,即该簇中所有点的平均值。

  4. 重复步骤2和3,直到质心不再变化或达到最大迭代次数。

用数学公式表示为:

  1. 初始质心:

  2. 分配数据点:

  3. 更新质心:

其中,表示第个簇的质心,表示第个簇,表示欧几里德距离。

其他聚类算法简要介绍

OPTICS(Ordering Points To Identify the Clustering Structure)

OPTICS算法通过分析数据点的可达性图来识别不同密度的簇,非常适合处理具有不同密度的复杂数据集。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import OPTICS

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd1 = deepcopy(pcd)
    points = np.array(pcd1.points)
    result = OPTICS(min_samples=2, max_eps=5).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd1.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd1], window_name="OPTICS 点云聚类", width=800, height=600)

图片

Spectral Clustering

Spectral Clustering利用数据的特征值和特征向量,将数据映射到一个低维空间中进行聚类,适合处理非凸形状的簇。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import SpectralClustering

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd2 = deepcopy(pcd)
    points = np.array(pcd2.points)
    result = SpectralClustering(n_clusters=8).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd2.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd2], window_name="Spectral Clustering 点云聚类", width=800, height=600)

图片

Hierarchical Clustering

Hierarchical Clustering分为凝聚层次聚类和分裂层次聚类,创建一棵树状结构(树状图)来表示数据点之间的层次关系。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import AgglomerativeClustering

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd3 = deepcopy(pcd)
    points = np.array(pcd3.points)
    result = AgglomerativeClustering(n_clusters=8).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd3.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd3], window_name="Hierarchical Clustering 点云聚类", width=800, height=600)

图片

Mean-shift

Mean-shift是一种基于密度的聚类方法,通过滑动窗口找到数据点密度的峰值,非常适合处理形状不规则的簇。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import estimate_bandwidth, MeanShift

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd4 = deepcopy(pcd)
    points = np.array(pcd4.points)
    bandwidth = estimate_bandwidth(points, quantile=0.2, n_samples=500)
    result = MeanShift(bandwidth=bandwidth).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd4.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd4], window_name="Mean-shift 点云聚类", width=800, height=600)

图片

BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)

BIRCH算法通过构建一个高度平衡的树结构,进行逐步聚类,适用于大规模数据集。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import Birch

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd5 = deepcopy(pcd)
    points = np.array(pcd5.points)
    result = Birch(n_clusters=8).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd5.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd5], window_name="BIRCH 点云聚类", width=800, height=600)

图片

Affinity Propagation

Affinity Propagation通过传递“信息”在数据点之间找到一组最能代表其他数据点的“示例”,不需要预先指定簇的数量。

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import AffinityPropagation

if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)  # 每10个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])  # 指定显示为灰色
    print(pcd)
    
    pcd6 = deepcopy(pcd)
    points = np.array(pcd6.points)
    result = AffinityPropagation(preference=-20).fit(points)
    labels = result.labels_
    max_label = np.max(labels) + 1
    colors = np.random.randint(255, size=(max_label+1, 3)) / 255.
    colors = colors[labels]
    colors[labels < 0] = 0  # 没有分类成功的点设置为黑色
    pcd6.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd6], window_name="Affinity Propagation 点云聚类", width=800, height=600)

图片

以上所有的聚类算法同时对目标点云数据进行聚类的结果如下:

# -*- coding: utf-8 -*-
"""
乐乐感知学堂公众号
@author: https://blog.csdn.net/suiyingy
"""
 

import open3d as o3d
import numpy as np
from copy import deepcopy
from sklearn.cluster import OPTICS, SpectralClustering, AgglomerativeClustering, estimate_bandwidth, MeanShift, Birch, AffinityPropagation
 
 
if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd = pcd.uniform_down_sample(10)#每50个点采样一次
    pcd.paint_uniform_color([0.5, 0.5, 0.5])#指定显示为灰色
    print(pcd)
    
    pcd1 = deepcopy(pcd)
    pcd1.translate((20, 0, 0)) #整体进行x轴方向平移20
    points = np.array(pcd1.points)
    result = OPTICS(min_samples=2, max_eps=5).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd1.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
    
    pcd2 = deepcopy(pcd)
    pcd2.translate((-20, 0, 0)) #整体进行x轴方向平移-20
    points = np.array(pcd2.points)
    result = SpectralClustering(n_clusters=8).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd2.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
    pcd3 = deepcopy(pcd)
    pcd3.translate((0, 20, 0)) #整体进行y轴方向平移20
    points = np.array(pcd3.points)
    result = AgglomerativeClustering(n_clusters=8).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd3.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
    pcd4 = deepcopy(pcd)
    pcd4.translate((0, -20, 0)) #整体进行y轴方向平移-20
    points = np.array(pcd4.points)
    #定义搜索半径,也可以直接初始化一个数值
    bandwidth = estimate_bandwidth(points, quantile=0.2, n_samples=500)
    result = MeanShift(bandwidth=bandwidth).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd4.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
    pcd5 = deepcopy(pcd)
    pcd5.translate((40, 0, 0)) #整体进行x轴方向平移40
    points = np.array(pcd5.points)
    result = Birch(n_clusters=8).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd5.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
    
    pcd6 = deepcopy(pcd)
    pcd6.translate((-40, 0, 0)) #整体进行x轴方向平移-40
    points = np.array(pcd6.points)
    result = AffinityPropagation(preference=-20).fit(points)
    #各个类别中心
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label+1, 3))/255.
    colors = colors[labels]
    #没有分类成功的点设置为黑色
    colors[labels < 0] = 0 
    pcd6.colors = o3d.utility.Vector3dVector(colors[:, :3])
    
 
    # 点云显示
    o3d.visualization.draw_geometries([pcd, pcd1, pcd2, pcd3, pcd4, pcd5, pcd6], #点云列表
                                      window_name="点云聚类",
                                      point_show_normal=False,
                                      width=800,  # 窗口宽度
                                      height=600)  # 窗口高度

图片

KMeans可视化算法实例

以下是一个使用Open3D进行KMeans聚类的示例:

import open3d as o3d
import numpy as np
from sklearn.cluster import KMeans
 
 
if __name__ == '__main__':
    file_path = 'rabbit.pcd'
    pcd = o3d.io.read_point_cloud(file_path)
    pcd.paint_uniform_color([0.5, 0.5, 0.5])#指定显示为灰色
    print(pcd)
    points = np.array(pcd.points)
    result = KMeans(n_clusters=8).fit(points)
    #各个类别中心
    center = result.cluster_centers_
    # labels返回聚类成功的类别,从0开始,每个数据表示一个类别
    labels = result.labels_
    #最大值相当于共有多少个类别
    max_label = np.max(labels) + 1 #从0开始计算标签
    print(max(labels))
    #生成k个类别的颜色,k表示聚类成功的类别
    colors = np.random.randint(255, size=(max_label, 3))/255.
    colors = colors[labels]
    pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
 
    # 点云显示
    o3d.visualization.draw_geometries([pcd], #点云列表
                                      window_name="Kmeans点云聚类",
                                      point_show_normal=False,
                                      width=800,  # 窗口宽度
                                      height=600)  # 窗口高度

图片

以上内容总结自网络,如有帮助欢迎关注与转发,我们下次再见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值