【力扣】300.最长递增子序列

该博客探讨了如何使用动态规划算法解决寻找整数数组中最长严格递增子序列长度的问题。作者指出,关键在于理解dp[i]不仅取决于nums[i]和nums[i-1]的关系,而是要遍历之前的dp数组,找到所有能与nums[i]构成递增子序列的dp[j],取最大值加1作为dp[i]。通过示例和代码解析,详细阐述了动态规划的状态转移过程和实现细节。
摘要由CSDN通过智能技术生成

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

思考

这是经典的动态规划的题目,很容易想到的是dp[i]表示到nums[i]的最长递增子序列的长度,难点在于怎么推出状态转移方程,我一开始想的是如果nums[i] > nums[i - 1],那么更新dp[i] = dp[i - 1] + 1,否则dp[i] = dp[i - 1],提交后出现以下问题:

测试用例:[4,10,4,3,8,9]

我的输出:4

预期输出:3

当程序运行到dp[4]时,由于dp[3] = 2,且nums[4] > nums[3],所以dp[4]更新为了2 + 1 = 3,同理dp[5]更新为了4,最后返回值也为4,这里的错误之处在于,dp[i]的状态转移并不仅仅取决于nums[i]和nums[i - 1]的大小。

正确思路

dp[i]仍然表示到nums[i]的最长递增子序列的长度

遍历nums数组,当遍历到nums[i]时,查看dp[0,...,i - 1],如果nums[i]大于之前的某个数,即nums[i] > nums[j](0 ≤ j < i),那么表示以nums[j]结尾的最长递增子序列后可跟上nums[i]从而形成更长的递增子序列,长度为dp[j] + 1,找到[0,...,i - 1]中最大的dp[j] + 1即为dp[i],最后返回dp[i]中的最大值即可。

具体代码如下:

class Solution {
    /*
    *最长递增子序列
    *dp[i]表示以nums[i]结尾的最长递增子序列长度
    *遍历到nums[i]时,查看dp数组元素j
    *如果nums[i] > nums[j] 那么nums[i]和dp[j]组成新的递增子序列 即dp[j] + 1
    *找出目前最大的dp[j] + 1就是dp[i]的值
    *即if(nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
    */
    public int lengthOfLIS(int[] nums) {
        int len = nums.length;
        int[] dp = new int[len];
        Arrays.fill(dp, 1);  //dp[i]的默认值为1

        int res = dp[0];    //记录最后的返回结果

        for(int i = 1; i < len; i++) {
            for(int j = i - 1; j >= 0; j--) {//遍历dp[0,...,i - 1]
                if(nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], 1 + dp[j]);  //dp[i]为最大的dp[j] + 1
                }
            }
            res = Math.max(res, dp[i]);  //比较dp[i]与res的大小,并更新res为较大值
        }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值