题目描述
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
思考
这是经典的动态规划的题目,很容易想到的是dp[i]表示到nums[i]的最长递增子序列的长度,难点在于怎么推出状态转移方程,我一开始想的是如果nums[i] > nums[i - 1],那么更新dp[i] = dp[i - 1] + 1,否则dp[i] = dp[i - 1],提交后出现以下问题:
测试用例:[4,10,4,3,8,9]
我的输出:4
预期输出:3
当程序运行到dp[4]时,由于dp[3] = 2,且nums[4] > nums[3],所以dp[4]更新为了2 + 1 = 3,同理dp[5]更新为了4,最后返回值也为4,这里的错误之处在于,dp[i]的状态转移并不仅仅取决于nums[i]和nums[i - 1]的大小。
正确思路
dp[i]仍然表示到nums[i]的最长递增子序列的长度
遍历nums数组,当遍历到nums[i]时,查看dp[0,...,i - 1],如果nums[i]大于之前的某个数,即nums[i] > nums[j](0 ≤ j < i),那么表示以nums[j]结尾的最长递增子序列后可跟上nums[i]从而形成更长的递增子序列,长度为dp[j] + 1,找到[0,...,i - 1]中最大的dp[j] + 1即为dp[i],最后返回dp[i]中的最大值即可。
具体代码如下:
class Solution {
/*
*最长递增子序列
*dp[i]表示以nums[i]结尾的最长递增子序列长度
*遍历到nums[i]时,查看dp数组元素j
*如果nums[i] > nums[j] 那么nums[i]和dp[j]组成新的递增子序列 即dp[j] + 1
*找出目前最大的dp[j] + 1就是dp[i]的值
*即if(nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
*/
public int lengthOfLIS(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1); //dp[i]的默认值为1
int res = dp[0]; //记录最后的返回结果
for(int i = 1; i < len; i++) {
for(int j = i - 1; j >= 0; j--) {//遍历dp[0,...,i - 1]
if(nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], 1 + dp[j]); //dp[i]为最大的dp[j] + 1
}
}
res = Math.max(res, dp[i]); //比较dp[i]与res的大小,并更新res为较大值
}
return res;
}
}