关于epoch和batch-size以及iteration

对于初学者来讲,有几个概念容易混淆:

(1)iteration:表示1次迭代(也叫training step),每次迭代更新1次网络结构的参数;

(2)batch-size:1次迭代所使用的样本量;

(3)epoch:1个epoch表示过了1遍训练集中的所有样本。

值得注意的是,在深度学习领域中,常用带mini-batch的随机梯度下降算法(Stochastic Gradient Descent, SGD)训练深层结构,它有一个好处就是并不需要遍历全部的样本,当数据量非常大时十分有效。比如说你的batch-size是32,你有32000个数据,你的一个epoch就有1000次iteration,如果你的显存不够大的话,需要设置较小的batch-size

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值