batch、batch size与epoch

batch:

表示批次。设置过大的批次(batch)大小,可能会对训练时网络的准确性产生负面影响,因为它降低了梯度下降的随机性。

Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 (Full Batch Learning)的形式,这样做至少有 2 个好处:

其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。

其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用Rprop 只基于梯度符号并且针对性单独更新各权值。

对于更大的数据集,以上 2 个好处又变成了 2 个坏处:

其一,随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。

其二,以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。这才有了后来 RMSProp 的妥协方案。

epoch:

当我们分批学习时,每次使用过全部训练数据完成一次Forword运算以及一次BP运算,称为完成了一次epoch。

Batch_Size:

既然 Full Batch Learning 并不适用大数据集,那么走向另一个极端怎么样?所谓另一个极端,就是每次只训练一个样本,即 Batch_Size = 1。这就是在线学习Online Learning)。线性神经元在均方误差代价函数的错误面是一个抛物面,横截面是椭圆。对于多层神经元、非线性网络,在局部依然近似是抛物面。使用在线学习,每次修正方向以各自样本的梯度方向修正,横冲直撞各自为政,难以达到收敛。

【batch size最大是样本总数N,此时就是Full batch learning;最小是1,即每次只训练一个样本,这就是在线学习(Online Learning)。】

可不可以选择一个适中的 Batch_Size 值呢?

这就是批梯度下降法(Mini-batches Learning)。因为如果数据集足够充分,那么用一半(甚至少得多)的数据训练算出来的梯度与用全部数据训练出来的梯度是几乎一样的。

在合理范围内,增大 Batch_Size 有何好处?

内存利用率提高了,大矩阵乘法的并行化效率提高。

跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。

在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

总结:

随着 Batch_Size 增大,处理相同数据量的速度越快。

随着 Batch_Size 增大,达到相同精度所需要的 epoch 数量越来越多。

由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。

由于最终收敛精度会陷入不同的局部极值,因此 Batch_Size 增大到某些时候,达到最终收敛精度上的最优。

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值