十一、树结构的实际应用—堆排序

本文介绍了堆排序算法,包括大顶堆和小顶堆的概念,堆排序的基本思想,以及详细的步骤图解。堆排序是一种O(nlogn)时间复杂度的选择排序,通过构建和调整堆来实现升序或降序排列。文章还给出了使用堆排序对数组进行升序排序的步骤示例。
摘要由CSDN通过智能技术生成

1、基本介绍

  • 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最好最坏平均时间复杂度均为O(n\log n) 。也不是稳定排序。
  • 堆是具有以下性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大顶堆,注意:没有要求节点的左孩子的值和右孩子的值的大小关系。
  • 每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆。

大顶堆举例说明:
在这里插入图片描述
小顶堆举例说明:
在这里插入图片描述一般升序排序采用大顶堆,降序排序采用小顶堆

2、堆排序的基本思想

  • 将待排序序列构造成一个大顶堆
  • 此时,整个序列的最大值就是堆顶的根节点
  • 将其与末尾元素进行交换,此时末尾就为最大值
  • 然后将剩余的 n-1 个元素重新构成一个堆,这样就会得到 n 个元素的次小值。如此反复进行,便能得到一个有序序列了

可以看到,在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了。

3、堆排序步骤图解

要求:给你一个数组 {4, 6, 8, 5, 9} ,要求使用堆排序,将数组升序排序

步骤一:构造初始堆。将给定的无序序列构造为一个大顶堆(一般升序排序采用大顶堆,降序排序采用小顶堆)
1)假定给定的无序序列结构如下:
在这里插入图片描述
2)此时我们从最后一个非叶子节点开始(叶节点不用调整,第一个非叶子节点在数组中的索引是:arr.length/2-1=5/2-1=1,也就是下面的6节点),从左至右,从下至上进行调整
在这里插入图片描述
3)找到第二个非叶子节点4,由于 [4, 9, 8] 中 9 最大,所以 4 和 9 交换
在这里插入图片描述
4)这时,交换导致了子根 [4, 5, 6] 结构混乱,继续调整, [4, 5, 6] 中,6最大,交换 4 和 6
在这里插入图片描述
此时,我们就将一个无序序列构造成了一个大顶堆

步骤二:将堆顶元素与末尾元素进行交换,使末尾元素最大,然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素,如此反复进行交换、重建、交换。
1)将堆顶元素 9 和末尾元素 4 进行交换
在这里插入图片描述
2)重新调整结构,使其继续满足堆定义
在这里插入图片描述
3)再将堆顶元素 8 与末尾元素 5 进行交换,得到第二大元素 8
在这里插入图片描述
4)后续过程,继续进行调整、交换,如此反复进行,最终使得整个序列有序
在这里插入图片描述
堆排序思路总结

  • 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
  • 将堆顶元素与末尾元素交换,将最大元素“沉”到数组末端
  • 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序

4、堆排序代码实现

public class HeapSortDemo {
	public static void main(String[] args) {
		//要求将数组进行升序排列----大顶锥
		int[] arr=new int[]{4,6,8,5,9};
		heapSort(arr);
		System.out.println("堆排序:" + Arrays.toString(arr));
	}

	public static void heapSort(int[] arr) {
		int temp = 0;
		//将无序序列建成一个大顶堆
		for (int i = arr.length/2-1; i >=0; i--) {
			adjustHeap(arr, i, arr.length);
		}
		
		for (int j = arr.length -1; j > 0; j--) {
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j);//写0的目的是始终从顶部开始找
		}
	}

	/**
	 * 将对应的非叶子节点的树调整成大顶锥
	 * @param arr 待调整的数组
	 * @param i 表示非叶子节点在数组中的索引(是从最后一个非叶子节点开始的)
	 * @param length 表示对多少个元素进行调整,length在逐渐的减少
	 */
	public static void adjustHeap(int[] arr,int i,int length) {
		int temp = arr[i];
		
		for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
			if (k + 1< length && arr[k] < arr[k+1]) {//这个说明左子节点的值小于右子节点的值
				 k++;//在这种情况下让k指向右子节点(k为左子节点,k+1是右子节点)
			}
			if (arr[k] > temp) {//如果子节点大于父节点
				arr[i] = arr[k];//把较大的值,赋给当前节点
				i = k;//因为k没有完,下面可能还有左子树或者右子树
			}else {
				break;//如果是小于,直接停止即可,因为是从最后一个非叶子节点开始的,不用判断下面,下面就是有序的。
			}
			
		}
		 //当for循环结束后,我们已经将i为父节点的数的最大值放在了最顶上(局部)
        arr[i]=temp;//将temp赋值的放到调整后的位置
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值