第十三周实践项目1-分数类中的运算符重载

问题及代码:

/*
 *Copyright(c)2016,烟台大学计算机与控制工程学院
 *All right reserved.
 *文件名称:77.cpp
 *作    者:董凯琦
 *完成日期:2016年5月25日
 *版 本 号:v1.0
 *
 *问题描述:(1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简)、比较(6种关系)的运算。

class CFraction
{
private:
    int nume;  // 分子
    int deno;  // 分母
public:
    //构造函数及运算符重载的函数声明
};
//重载函数的实现及用于测试的main()函数

  (2)在(1)的基础上,实现分数类中的对象和整型数的四则运算。分数类中的对象可以和整型数进行四则运算,且运算符合交换律。例如:CFraction a(1,3),b; int i=2; 可以完成b=a+i;。同样,可以完成i+a, 45+a, a*27, 5/a等各种运算。
  (3)定义分数的一目运算+和-,分别代表分数取正和求反,将“按位取反运算符”~重载为分数的求倒数运算。
  (4)定义分数类中<<和>>运算符重载,实现分数的输入输出,改造原程序中对运算结果显示方式,使程序读起来更自然。


 *输入描述:
 *程序输出:
 */
#include <iostream>
#include<Cmath>
using namespace std;
class CFraction
{
private:
    int nume;
    int deno;
public:
    CFraction(int nu=0,int de=1):nume(nu),deno(de){}
    void simplify();
    friend istream &operator>>(istream &in,CFraction &x);
    friend ostream &operator<<(ostream &out,CFraction x);//输入输出的重载
    CFraction operator+(const CFraction &c);
    CFraction operator-(const CFraction &c);
    CFraction operator*(const CFraction &c);
    CFraction operator/(const CFraction &c);
    CFraction operator+();  //取正一目运算
    CFraction operator-();  //取反一目运算
    CFraction operator~();  //取倒数一目运算
    bool operator>(const CFraction &c);
    bool operator<(const CFraction &c);
    bool operator==(const CFraction &c);
    bool operator!=(const CFraction &c);
    bool operator>=(const CFraction &c);
    bool operator<=(const CFraction &c);
};
void CFraction::simplify()
{
    int a,b,r;
    a=fabs(deno);
    b=fabs(nume);
    while(r=b%a)
    {
        b=a;
        a=r;
    }
    deno/=a;
    nume/=b;
    if(deno<0)
    {
        deno=-deno;
        nume=-nume;
    }
}
// 重载输入运算符>>
istream &operator>>(istream &in,CFraction &x)
{
    char ch;
    while(1)
    {
        cin>>x.nume>>ch>>x.deno;
        if (x.deno==0)
            cerr<<"分母为0, 请重新输入\n";
        else if(ch!='/')
            cerr<<"格式错误(形如m/n)! 请重新输入\n";
        else
            break;
    }
    return cin;
}

// 重载输出运算符<<
ostream &operator<<(ostream &out,CFraction x)
{
    cout<<x.nume<<'/'<<x.deno;
    return cout;
}
// 分数相加
CFraction CFraction::operator+(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.deno+c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相减
CFraction CFraction:: operator-(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.deno-c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相乘
CFraction CFraction:: operator*(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.nume;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相除
CFraction CFraction:: operator/(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.deno;
    t.deno=deno*c.nume;
    t.simplify();
    return t;
}

// 分数取正号
CFraction CFraction:: operator+()
{
    return *this;
}

// 分数取负号
CFraction CFraction:: operator-()
{
    CFraction x;
    x.nume=-nume;
    x.deno=deno;
    return x;
}

// 分数取倒数
CFraction CFraction:: operator~()
{
    CFraction x;
    x.nume=deno;
    x.deno=nume;   //未对原分子为0的情况进行处理
    if(x.deno<0)   //保证负分数的负号在分子上
    {
        x.deno=-x.deno;
        x.nume=-x.nume;
    }
    return x;
}

// 分数比较大小
bool CFraction::operator>(const CFraction &c)
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;        // 计算分数通分后的分子,同分母为deno*c.deno
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno>0) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator<(const CFraction &c)
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno<0) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator==(const CFraction &c)
{
    if (*this!=c) return false;
    return true;
}

// 分数比较大小
bool CFraction::operator!=(const CFraction &c)
{
    if (*this>c || *this<c) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator>=(const CFraction &c)
{
    if (*this<c) return false;
    return true;
}

// 分数比较大小
bool CFraction::operator<=(const CFraction &c)
{
    if (*this>c) return false;
    return true;
}

int main()
{
    CFraction x,y,s;
    cout<<"输入x: ";
    cin>>x;
    cout<<"输入y: ";
    cin>>y;
    s=+x+y;
    cout<<"+x+y="<<s<<endl;
    s=x-y;
    cout<<"x-y="<<s<<endl;
    s=x*y;
    cout<<"x*y="<<s<<endl;
    s=x/y;
    cout<<"x/y="<<s<<endl;
    cout<<"-x="<<-x<<endl;
    cout<<"+x="<<+x<<endl;
    cout<<"x的倒数: "<<~x<<endl;

    cout<<x;
    if (x>y) cout<<"大于";
    if (x<y) cout<<"小于";
    if (x==y) cout<<"等于";
    cout<<y<<endl;
    return 0;
}
运行结果:

知识点总结:

从这个程序中,我们可以熟悉运算符重载的知识点。

在分数类中的运算符重载中要注意化简函数的实现。

学习心得:

要注意考虑到方方面面!

(有理数)创建一个名为 Rational 的,用于对分数进行算术算。编写一个程序来测试你的使用整数变量来表示的私有实例变量——分子和分母。 提供一个构造函数,使该的对象能够在声明时进行初始化。构造函数应以简化形式存储分数分数 2/4 等价于 1/2,并将作为分子中的 1 和分母中的 2 存储在对象中。 如果没有提供初始值设定项,请提供默认值为 1 的无参数构造函数。 提供执行以下每个操作的公共方法: a) 将两个有理数相:相的结果应以简化形式存储。 b) 两个有理数相:相的结果应以简化形式存储。 c) 将两个有理数相乘:相乘的结果应以简化形式存储。 d) 将两个有理数相除:相除的结果应以简化形式存储。 e) 以 a/b 的形式返回有理数的字符串表示形式,其中 a 是分子,b 是分母。 f) 以浮点格式返回有理数的字符串表示形式. (考虑提供格式化功能,的用户能够指定小数点右侧的精度位数。) 【Sample output 1】 Enter numerator 1: 12 Enter denominator 1: 3 Enter numerator 2: 5 Enter denominator 2: 14 Enter precision: 3 a=4/1 b=5/14 a + b = 61/14 = 4.357 a - b = 51/14 = 3.643 a * b = 10/7 = 1.429 a / b = 56/5 = 11.200 【Sample output 2】 Enter numerator 1: 1 Enter denominator 1: 4 Enter numerator 2: 75 Enter denominator 2: 35 Enter precision: 1 a=1/4 b=15/7 a + b = 67/28 = 2.4 a - b = -53/28 = -1.9 a * b = 15/28 = 0.5 a / b = 7/60 = 0.1 Note: The red texts are inputed ,others are output texts. Just use a space to seperate words
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值