2024年国赛B题——基于成本效益分析的生产决策模型(附完整代码)

省一论文,仍有不详细和欠缺之处,仅供参考,在此特别感谢我的队友们,真的很给力很负责,没有遗憾了,幸运捏~。💕

24年国赛B题

这道题看起来比较简单实际上不太好做,难点在于决策模型的构建,这里给大家一点参考。

牵扯到概率论与数理统计以及排列组合,时间复杂度较高,会难以模拟,若简化问题会导致结果不够精确,有舍有得,要把握好度。感谢靠谱的队友~

还有很多地方有所疏漏,欢迎补充指点,希望这篇博客对你有所帮助吖,有时间欢迎逛逛我的博客

完整代码指路

其实不难,其实只需要你有勇气去学,哪怕一点点。加油!!!

对不起,您提到的具体目涉及到竞,而且MATLAB是一种强大的数值计算软件,用于数据可视化、算法开发等,对于具体的竞目,尤其是含有策略制定、模拟等内容,通常需要结合实际问背景和规则编写代码。由于缺乏详细的问描述,我无法直接给出完整代码。 不过,我可以提供一个基础的框架指导如何在MATLAB中处理这类问。假设您的问是关于某种状态空间搜索(如贪心、深度优先搜索或动态规划),你可以按照以下步骤: 1. 定义状态空间和行动集合。 ```matlab states = ...; % 假设这里是所有可能的状态 actions = ...; % 假设这里有多种可能的动作 ``` 2. 计算每个动作的成本函数。 ```matlab cost_function = @(state, action) ...; % 填入根据目定义的实际成本函数 ``` 3. 如果涉及动态规划,可以使用`resursiveArrayfun`或`parfor`循环来遍历状态树并累积最小成本。 ```matlab if isDynamicProgrammingProblem T = zeros(numel(states), numel(actions)); % 初始化动态规划表 T(:, 1) = cost_function(states, actions(1)); % 初始状态的成本 % 使用动态规划算法填充T矩阵 parfor i = 2:numel(actions) T(:, i) = min(T(:, 1:i-1), cellfun(@(prevAction) cost_function(states, actions(i)) + T(prevAction, i-1), 1:i-1)); end else % 对于简单的搜索算法,如贪心或广度优先搜索 % ... end ``` 4. 最终结果存储在`T`矩阵中,每一行对应一个状态,列对应各动作的成本。 请注意,这只是一个非常基础的示例,并未包含所有细节,比如搜索算法的选择、剪枝策略等可能会影响最终代码。为了准确编写代码,你需要详细了解问的具体需求和限制条件。请提供更多目信息,以便我能给出更精确的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alive~o.0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值