备战2024数学建模国赛(模型五):典型相关分析 优秀案例(一)葡萄酒的评价

 专栏内容(赛前预售价99,比赛期间299): 2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)

python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。

35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。

 

目录

 摘 要

一、问题重述

二、问题分析

三、模型假设

四、符号说明

五、模型建立与求解

六、模型的评价、改进与推广

七、参考文献

八、附录


 摘 要

        本文运用多种相关分析、综合评价和线性回归等方法解决了葡萄酒质量的评价问题。对于问题一,首先通过单样本 K-S 检验等方法确定了各葡萄酒样本评分数据的概率分布,从而确定了显著性差异模型的建立,接着考虑两组评分数据的配对关系约束,引入 Wilcoxon 符号秩检验法来进行显著性差异的假设检验。结果显示对于红、白葡萄酒,两个品酒组的评价结果均存在显著性差异。最后利用秩相关分析,引入肯德尔和谐系数法评定评酒组的评分信度,评价结果显示对于红葡萄酒,第一组品酒员的品尝得分更为可信,而对于白葡萄酒则是第二组品酒员在可信度方面占优。
        问题二,运用主成分分析法进行指标遴选,构建酿酒葡萄质量的综合评价指标体系,并利用该指标体系建立基于综合评价的酿酒葡萄分级模型,对酿酒葡萄进行分级。结果发现样本葡萄大多集中在二、三级,红葡萄样本中样本 23 质量最优,为特级葡萄;样本 12 质量相对欠缺,属六级葡萄。
        问题三中,采用研究两组变量之间相关关系的多元统计方法——典型相关分析,识别并量化两组变量——酿酒葡萄与葡萄酒的理化指标——之间的关系。分析结果如下:第一,增大酿酒葡萄果皮的含量对葡萄酒中 DPPH 半抑制体积含量的增加有重要影响;第二,酿酒葡萄中的苹果酸不仅能促

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值