Imagenet classification with deep convolutional neural networks
AlexNet
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
总结
网络结构是5层卷积和3层全连接,使用不饱和激活函数ReLU加快训练速度,局部响应标准化LRU可以加快训练速度增加模型泛化能力,因为用了不饱和激活函数ReLU,所以不能再加快速度了。重叠池化,不容易过拟合,提升少许性能。本文的减少过拟合是一个重点,使用了随机裁剪和翻转,以及PCA改变图片像素值来作为数据扩增手段,另外还用了Dropout来减少过拟合。在预测方面,一张256图片,4角中心取5张,翻转后变成10张,取模型结果的平均作为最后的结果。结果在LSVRC-2010和2012上测评,单模型,集成5个模型和预训练模型。
摘要
ImageNet是一个数据集,有1500万标记过的高分辨率图片,22000个类别。
ImageNet Large-Scale Visual Recognition Challenge(ILSVRC)是用ImageNet部分数据集(1000个类别)举办的比赛,训练集120万张,验证机5000张,测试集15万张。有两个评价指标,top-1,top-5指预测出来概率前5的结果中包括了正确标签。
ImageNet图片大小不一,中心裁剪到256大小,使用训练集的均值对图片去均值。
引言
现有的方法是用机器学习做目标识别。因为数据集少,机器学习足够了,但是现实中的图片就不一样了。出现了大规模标注的数据集,LabelMe、ImageNet。
需要有足够学习能力的模型来学习这么多图片的目标。然而现实中那么多图片,不都包含在ImageNet中,所以需要学习先验知识。CNN可以通过改变深度和宽度来增加学习能力,和普通的机器学习神经网络相比可以学习到图片的本质,也就是统计的平稳性和像素相关性的局部性,而且参数更少,更容易训练。
CNN效果好,效率也比较高,但是还是不能用在高分辨率的图片上。使用高度优化的二维卷积,现在的GPU可以放两张像ImageNet的图片。有足够的图片可以防止严重的过拟合。
在ImageNet子集ILSVRC2010和2012的数据集上训练模型,在GPU上实现卷积和其他训练操作。在第3节介绍了一些方法来提高模型性能,减少训练时间。第4节介绍了一些有效的防止过拟合的方法。
模型受限于GPU,可以通过提高GPU和数据集来获得更好的效果。
数据集
ImageNet是一个数据集,有1500万标记过的高分辨率图片,22000个类别。
ImageNet Large-Scale Visual Recognition Challenge(ILSVRC)是用ImageNet部分数据集(1000个类别)举办的比赛,训练集120万张,验证机5000张,测试集15万张。有两个评价指标,top-1,top-5指预测出来概率前5的结果中包括了正确标签。
ImageNet图片大小不一,中心裁剪到256大小,使用训练集的均值对图片去均值。
网络结构
先介绍一些除了卷积以外的其他特殊的操作。ReLU激活函数,饱和激活函数比不饱和训练的慢。
因为本文主要是减少过拟合,所以没有展开讨论传统变体激活函数和ReLU的好坏。ReLU激活函数不需要对输入进行标准化来防止它到饱和区域,因为只要有正的输入就可以训练神经元。但是局部归一化LRU可以增加泛化能力。