【AI大模型应用开发】【LangChain系列】2. 一文全览LangChain数据连接模块:从文档加载到向量检索RAG,理论+实战+细节

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

本文学习 LangChain 中的 数据连接(Retrieval) 模块。该模块提供文档加载、切分,向量存储、检索等操作的封装。最后,结合RAG基本流程LangChain Prompt模板和输入输出模块,我们将利用LangChain实现RAG的基本流程。

0. 模块介绍

在前面文章中我们已经讲了大模型存在的缺陷:数据不实时,缺少垂直领域数据和私域数据等。解决这些缺陷的主要方法是通过检索增强生成(RAG)。首先检索外部数据,然后在执行生成步骤时将其传递给LLM。

LangChain为RAG应用程序提供了从简单到复杂的所有构建块,本文要学习的数据连接(Retrieval)模块包括与检索步骤相关的所有内容,例如数据的获取、切分、向量化、向量存储、向量检索等模块(见下图)。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值