大多数随机生成的输入在语法上是无效的,因此很快就会被处理程序拒绝。为了行使输入处理以外的功能,我们必须增加获得有效输入的机会。其中一种方法是所谓的突变模糊测试,即对现有输入进行微小的更改,这些更改可能仍使输入有效,但会执行新的行为。我们展示了如何创建这样的突变,以及如何引导它们走向尚未发现的代码,应用流行的 AFL 模糊器的核心概念。
本章介绍一个类,该类采用种子输入列表,然后进行突变:MutationFuzzer
>>> seed_input = "http://www.google.com/search?q=fuzzing"
>>> mutation_fuzzer = MutationFuzzer(seed=[seed_input])
>>> [mutation_fuzzer.fuzz() for i in range(10)]
['http://www.google.com/search?q=fuzzing',
'http://wwBw.google.com/searh?q=fuzzing',
'http8//wswgoRogle.am/secch?qU=fuzzing',
'ittp://www.googLe.com/serch?q=fuzzingZ',
'httP://wgw.google.com/seasch?Q=fuxzanmgY',
'http://www.google.cxcom/search?q=fuzzing',
'hFttp://ww.-g\x7fog+le.com/s%arch?q=f-uzz#ing',
'http://www\x0egoogle.com/seaNrch?q=fuZzing',
'http//www.Ygooge.comsarch?q=fuz~Ijg',
'http8//ww.goog5le.com/sezarc?q=fuzzing']
它维持着大量的投入,然后不断发展,以最大限度地扩大覆盖面。MutationCoverageFuzzer
>>> mutation_fuzzer = MutationCoverageFuzzer(seed=[seed_input])
>>> mutation_fuzzer.runs(http_runner, trials=10000)
>>> mutation_fuzzer.population[:5]
['http://www.google.com/search?q=fuzzing',
'http://wwv.oogle>co/search7Eq=fuzing',
'http://wwv\x0eOogleb>co/seakh7Eq\x1d;fuzing',
'http://wwv\x0eoglebkooqeakh7Eq\x1d;fuzing',
'http://wwv\x0eoglekol=oekh7Eq\x1d\x1bf~ing']
完全随机的fuzzing生成有效url的几率小,需要产生有效的输入!
这里代码from Fuzzer import fuzzer失败,因为不能从ipynb文件里引入类,所以手动把需要的类从Fuzzer.ipynb文件里复制过来就可以运行了。
如果我们一开始就有一些有效的输入,我们可以通过应用上述突变之一来创建更多的输入候选者。
这种策略的好处是,应用于更大的程序,它将愉快地探索一条又一条的路径——涵盖一个又一个的功能。所需要的只是一种捕获覆盖范围的方法。
经验 教训
- 随机生成的输入通常是无效的,因此主要执行输入处理功能。
- 来自现有有效输入的突变具有更高的有效机会,因此可以行使输入处理以外的功能。
后续步骤
在关于灰盒模糊测试的下一章中,我们进一步扩展了基于突变的测试的概念,其功率计划允许将更多的能量花在运行“不太可能”路径的种子和“更接近”目标位置的种子上。
---------------------------------------------------------------------------------------------------------------------------------
习题