03基于突变的模糊测试

大多数随机生成的输入在语法上是无效的,因此很快就会被处理程序拒绝。为了行使输入处理以外的功能,我们必须增加获得有效输入的机会。其中一种方法是所谓的突变模糊测试,即对现有输入进行微小的更改,这些更改可能仍使输入有效,但会执行新的行为。我们展示了如何创建这样的突变,以及如何引导它们走向尚未发现的代码,应用流行的 AFL 模糊器的核心概念。

本章介绍一个类,该类采用种子输入列表,然后进行突变:MutationFuzzer

>>> seed_input = "http://www.google.com/search?q=fuzzing"
>>> mutation_fuzzer = MutationFuzzer(seed=[seed_input])
>>> [mutation_fuzzer.fuzz() for i in range(10)]
['http://www.google.com/search?q=fuzzing',
 'http://wwBw.google.com/searh?q=fuzzing',
 'http8//wswgoRogle.am/secch?qU=fuzzing',
 'ittp://www.googLe.com/serch?q=fuzzingZ',
 'httP://wgw.google.com/seasch?Q=fuxzanmgY',
 'http://www.google.cxcom/search?q=fuzzing',
 'hFttp://ww.-g\x7fog+le.com/s%arch?q=f-uzz#ing',
 'http://www\x0egoogle.com/seaNrch?q=fuZzing',
 'http//www.Ygooge.comsarch?q=fuz~Ijg',
 'http8//ww.goog5le.com/sezarc?q=fuzzing']

维持着大量的投入,然后不断发展,以最大限度地扩大覆盖面。MutationCoverageFuzzer

>>> mutation_fuzzer = MutationCoverageFuzzer(seed=[seed_input])
>>> mutation_fuzzer.runs(http_runner, trials=10000)
>>> mutation_fuzzer.population[:5]
['http://www.google.com/search?q=fuzzing',
 'http://wwv.oogle>co/search7Eq=fuzing',
 'http://wwv\x0eOogleb>co/seakh7Eq\x1d;fuzing',
 'http://wwv\x0eoglebkooqeakh7Eq\x1d;fuzing',
 'http://wwv\x0eoglekol=oekh7Eq\x1d\x1bf~ing']

完全随机的fuzzing生成有效url的几率小,需要产生有效的输入!

这里代码from Fuzzer import fuzzer失败,因为不能从ipynb文件里引入类,所以手动把需要的类从Fuzzer.ipynb文件里复制过来就可以运行了。

如果我们一开始就有一些有效的输入,我们可以通过应用上述突变之一来创建更多的输入候选者。

这种策略的好处是,应用于更大的程序,它将愉快地探索一条又一条的路径——涵盖一个又一个的功能。所需要的只是一种捕获覆盖范围的方法。

经验 教训

  • 随机生成的输入通常是无效的,因此主要执行输入处理功能。
  • 来自现有有效输入的突变具有更高的有效机会,因此可以行使输入处理以外的功能。

后续步骤

在关于灰盒模糊测试的下一章中,我们进一步扩展了基于突变的测试的概念,其功率计划允许将更多的能量花在运行“不太可能”路径的种子和“更接近”目标位置的种子上。

---------------------------------------------------------------------------------------------------------------------------------

习题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值