机器学习第二周

多元线性回归

标准符号:下标代表第几个特征;上箭头代表是列表(向量);n代表特征个数。

多元线性回归(multiple linear regression)

---------------------------------------------------------------------------------------------------------------------------------

矢量化(Vectorization)

矢量化可以使用python中的NumPy库:1.使代码更短 2.执行更快

利用并行技术 in parallel

---------------------------------------------------------------------------------------------------------------------------------

梯度下降法用于多元线性回归

正态方程:有库支持,线性回归中找到w和b的另一种方法。(仅用于线性回归,不能推广)

对于多个特征,如果特征之间取值范围差距大,参数的等值图会是椭圆(梯度下降慢);反之,归一化使得收敛快。

特征缩放(feature scaling)

方法一:除以最大值

方法二:均值归一化

方法三:Z-score


什么时候进行特征缩放?使特征范围在-1~1附近

如何判断梯度下降收敛(convergence)

---------------------------------------------------------------------------------------------------------------------------------

选择步长(learning rate):首先选很小的步长α,检查损失函数是否减少,如果不减少,代码可能有问题。

---------------------------------------------------------------------------------------------------------------------------------

特征工程(feature engineer):重新组合原始特征

---------------------------------------------------------------------------------------------------------------------------------

多项式回归:结合多元线性回归和特征工程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值