多元线性回归
标准符号:下标代表第几个特征;上箭头代表是列表(向量);n代表特征个数。
多元线性回归(multiple linear regression)
---------------------------------------------------------------------------------------------------------------------------------
矢量化(Vectorization)
矢量化可以使用python中的NumPy库:1.使代码更短 2.执行更快
利用并行技术 in parallel
---------------------------------------------------------------------------------------------------------------------------------
梯度下降法用于多元线性回归
正态方程:有库支持,线性回归中找到w和b的另一种方法。(仅用于线性回归,不能推广)
对于多个特征,如果特征之间取值范围差距大,参数的等值图会是椭圆(梯度下降慢);反之,归一化使得收敛快。
特征缩放(feature scaling)
方法一:除以最大值
方法二:均值归一化
方法三:Z-score
什么时候进行特征缩放?使特征范围在-1~1附近
如何判断梯度下降收敛(convergence)
---------------------------------------------------------------------------------------------------------------------------------
选择步长(learning rate):首先选很小的步长α,检查损失函数是否减少,如果不减少,代码可能有问题。
---------------------------------------------------------------------------------------------------------------------------------
特征工程(feature engineer):重新组合原始特征
---------------------------------------------------------------------------------------------------------------------------------
多项式回归:结合多元线性回归和特征工程。