Caffe源码解读(一):代码组织结构

Caffe源码解读(一):代码组织结构

目录:

  • Caffe的目录结构
  • src目录下的关键代码
  • Caffe的核心代码
  • Caffe的三级结构:Blob、Layer、Net

Caffe的目录结构

  • data/ 用于存放下载的训练数据,存放了cifar10、ilsvrc12、mnist数据集
  • docs/ 帮助文档
  • examples/ 代码样例
  • matlab/ MATLAB接口文件
  • python/ PYTHON接口文件
  • models/ 一些配置好的模型参数
  • scripts/ 一些文档和数据会用到的脚本
  • tools/ 保存的源码是用于生成二进制处理程序的,caffe在训练时实际是直接调用这些二进制文件。
  • include/ Caffe的实现代码的头文件
  • src/ 实现Caffe的源文件

src目录下的关键代码

src目录下有两个目录:gtest和caffe

gtest

google test一个用于测试的库你make runtest时看见的很多绿色RUN OK就是它,这个与caffe的学习无关,不过是个有用的库

caffe 关键代码

  • caffe/ 关键代码
  • test/ 用gtest测试caffe的代码
  • util/ 数据转换时用的一些代码。caffe速度快,很大程度得益于内存设计上的优化(blob数据结构采用
    proto)和对卷积的优化(部分与im2col相关)
  • proto/ 即所谓的“Protobuf”,全称“Google Protocol Buffer”,是一种数据存储格式,帮助caffe提速
  • layers/ 深度神经网络中的基本结构就是一层层互不相同的网络了,这个文件夹下的源文件以及目前位置“src/caffe”中包含所有.cpp文件就是caffe的核心目录下的核心代码了。

Caffe核心源码

  • blob[.h .cpp]基本的数据结构Blob类
  • common[.h .cpp]定义Caffe类
  • internal_thread[.h .cpp]使用boost::thread线程库
  • net[.h .cpp]网络结构类Net
  • solver[.h .cpp]优化方法类Solver
  • data_transformer[.h .cpp]输入数据的基本操作类DataTransformer
  • syncedmem[.h .cpp]分配内存和释放内存类CaffeMallocHost,用于同步GPU和CPU数据
  • layer[.h .cpp]层类Layer
  • layer 此目录下的代码全部继承了类Layer,从layer_factory中注册继承

    Caffe三级结构

  • Blob: 用于数据的保存、交换和操作,caffe基础存储结构

  • Layer:用于模型和计算的基础
  • Net:整合链接Layers

    Net比作一座大楼,Layer相当于楼层,Blob相当于砖块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值