Caffe源码解读(一):代码组织结构
目录:
- Caffe的目录结构
- src目录下的关键代码
- Caffe的核心代码
- Caffe的三级结构:Blob、Layer、Net
Caffe的目录结构
- data/ 用于存放下载的训练数据,存放了cifar10、ilsvrc12、mnist数据集
- docs/ 帮助文档
- examples/ 代码样例
- matlab/ MATLAB接口文件
- python/ PYTHON接口文件
- models/ 一些配置好的模型参数
- scripts/ 一些文档和数据会用到的脚本
- tools/ 保存的源码是用于生成二进制处理程序的,caffe在训练时实际是直接调用这些二进制文件。
- include/ Caffe的实现代码的头文件
- src/ 实现Caffe的源文件
src目录下的关键代码
src目录下有两个目录:gtest和caffe
gtest
google test一个用于测试的库你make runtest时看见的很多绿色RUN OK就是它,这个与caffe的学习无关,不过是个有用的库
caffe 关键代码
- caffe/ 关键代码
- test/ 用gtest测试caffe的代码
- util/ 数据转换时用的一些代码。caffe速度快,很大程度得益于内存设计上的优化(blob数据结构采用
proto)和对卷积的优化(部分与im2col相关) - proto/ 即所谓的“Protobuf”,全称“Google Protocol Buffer”,是一种数据存储格式,帮助caffe提速
- layers/ 深度神经网络中的基本结构就是一层层互不相同的网络了,这个文件夹下的源文件以及目前位置“src/caffe”中包含所有.cpp文件就是caffe的核心目录下的核心代码了。
Caffe核心源码
- blob[.h .cpp]基本的数据结构Blob类
- common[.h .cpp]定义Caffe类
- internal_thread[.h .cpp]使用boost::thread线程库
- net[.h .cpp]网络结构类Net
- solver[.h .cpp]优化方法类Solver
- data_transformer[.h .cpp]输入数据的基本操作类DataTransformer
- syncedmem[.h .cpp]分配内存和释放内存类CaffeMallocHost,用于同步GPU和CPU数据
- layer[.h .cpp]层类Layer
layer 此目录下的代码全部继承了类Layer,从layer_factory中注册继承
Caffe三级结构
Blob: 用于数据的保存、交换和操作,caffe基础存储结构
- Layer:用于模型和计算的基础
Net:整合链接Layers
Net比作一座大楼,Layer相当于楼层,Blob相当于砖块。