本文介绍的内容,是用八叉树法降级一个真彩色图像(BPP=16以上)。这也是某公司在今年校园招聘中的笔试中的最后一道题目。我参考了 Jeff Prosise 所写的这篇文章(见参考资料),然后修改了他提供的范例的源码,使能够更好的演示该算法,同时我也添加了绘制八叉树的代码,可以直观的看到八叉树的形态。
索引图像的尺寸比真彩色图像可以大幅降低,保存为256色索引图像大约只有真彩色图像的1/3 (bpp = 24) 或 1/4 (bpp = 32),因为表示每个像素的数据从3或4个字节减少到1个字节。如果保存为16色索引图像则还能减小一半尺寸,不过16色图像的质量相比真彩图像实在过低,一般除非硬件限制(比如TC那样的图形模式下),在现在的条件下是很少再会用到的。它可以用在需要降级图像质量的场合,例如,如果我们生成一个图标,根据提供真彩色图像,然后根据此图像创建出的其他质量等级的图标图像。
【原创性声明】
本文提到的算法和原始范例的源码来自参考文献。以下部分属于我增加的代码:
(a)对八叉树的绘制以及生成动画;
(b)在不需要修改显示器模式的条件下展示八叉树算法生成的索引图像(原范例需要先把显示器调整为256色模式才能看到效果);
(c)把真彩色位图通过八叉树算法保存为 BMP 索引位图文件。
对该算法的介绍请参考 Jeff Prosise 的文档,是英文的,那篇文章中讲解了该算法的核心思想,我在这里不做重复介绍。根据文档的内容,八叉树算法最早是在1988, M. Gervautz 和 W. Purgathofer 发表的论文《A Simple Method for Color Quantization: Octree Quantization.》中首次介绍的。这个算法非常简洁优美,其优美之处在于从一副具有很多色彩的图像中,提取出最能完美表达该图像颜色的调色板的过程。这个过程就是一个八叉树的生长和节点合并的过程。该算法的最大优点是效率高,占用内存少(仅需要不超过 颜色数量+1 个节点,加上一些中间节点所占用的内存),选出的调色板最合理,显示效果最好。比流行方法(扫描图像然后取最多像素数量的颜色组成调色板)好很多。下图就是从我修改后的范例的展示出来的结果而来,我重新排列了一下图像:
为了我想要的展示,我调整了原来范例的代码,提供了一个根据真彩色位图,创建出八叉树的代码,该代码主要来源于原来的范例,该算法的核心是用RGB通道的相应的位组成子结点的索引(从高位开始提取RGB分量中的位),来让树生长。遍历图像的像素,根据当前像素的RGB分量导航到一个叶子节点(如果不存在则创建它),然后把当前像素的RGB分量累加到该节点的相应Sum值,并使节点代表的像素数量递增。每当叶子节点数量(代表一种颜色)超出最大颜色数量时,就选出一个最深的非叶子节点,将其收缩为叶子节点,最终的颜色值是用RGB分量的总和除以该节点代表的像素数量来得到的。可见,在多个相近的不同颜色降级成用同一个调色板颜色来表示时,调色板颜色是在它们之间取了一个加权平均(这种加权平均使原图中的一些“平滑渐变”变成了色带,例如上图中女模特面部的“等高线”效果),以达到表达图像本质的最佳效果。该算法中不需要统计整个图像的直方图也不需要排序,所以不会产生较大的内存需求。尽管真彩色图像可能具有大量的像素,大量的颜色数量,但它的颜色信息被集中统计在一颗较小的树的叶子节点上,该树的动态调整策略使得它总是反应着当前时刻的最佳选择,遍历像素时,结果以非常完美的方式进行“积累”(你不必担心统计结果被覆盖而不得不申请更多独立空间),这正是算法的优美之处。(代码中引用到的某些辅助方法在此省略):
//根据一个图像,创建一个八叉树,hoodlum1980 add; NODE* BuildOctree(HANDLE hImage, UINT nMaxColors, UINT nColorBits) { DIBSECTION ds; int i, j, nPad; BYTE* pbBits; WORD* pwBits; DWORD* pdwBits; DWORD rmask, gmask, bmask; int rright, gright, bright; int rleft, gleft, bleft; BYTE r, g, b; WORD wColor; DWORD dwColor; NODE* pTree; UINT nLeafCount, nIndex; NODE* pReducibleNodes[9]; // Initialize octree variables g_nMaxPixelCount = 0; pTree = NULL; nLeafCount = 0; if (nColorBits > 8) // Just in case return NULL; for (i=0; i<=(int) nColorBits; i++) pReducibleNodes[i] = NULL; // Scan the DIB and build the octree GetObject (hImage, sizeof (ds), &ds); nPad = ds.dsBm.bmWidthBytes - (((ds.dsBmih.biWidth * ds.dsBmih.biBitCount) + 7) / 8); switch (ds.dsBmih.biBitCount) { case 16: // One case for 16-bit DIBs if (ds.dsBmih.biCompression == BI_BITFIELDS) { rmask = ds.dsBitfields[0]; gmask = ds.dsBitfields[1]; bmask = ds.dsBitfields[2]; } else { rmask = 0x7C00; gmask = 0x03E0; bmask = 0x001F; } rright = GetRightShiftCount (rmask); gright = GetRightShiftCount (gmask); bright = GetRightShiftCount (bmask); rleft = GetLeftShiftCount (rmask); gleft = GetLeftShiftCount (gmask); bleft = GetLeftShiftCount (bmask); pwBits = (WORD*) ds.dsBm.bmBits; for (i=0; i<ds.dsBmih.biHeight; i++) { for (j=0; j<ds.dsBmih.biWidth; j++) { wColor = *pwBits++; b = (BYTE) (((wColor & (WORD) bmask) >> bright) << bleft); g = (BYTE) (((wColor & (WORD) gmask) >> gright) << gleft); r = (BYTE) (((wColor & (WORD) rmask) >> rright) << rleft); AddColor (&pTree, r, g, b, nColorBits, 0, &nLeafCount, pReducibleNodes); while (nLeafCount > nMaxColors) ReduceTree (nColorBits, &nLeafCount, pReducibleNodes); } pwBits = (WORD*) (((BYTE*) pwBits) + nPad); } break; case 24: // Another for 24-bit DIBs pbBits = (BYTE*) ds.dsBm.bmBits; for (i=0; i<ds.dsBmih.biHeight; i++) { for (j=0; j<ds.dsBmih.biWidth; j++) { //*pbBits = 0xff; b = *pbBits++; g = *pbBits++; r = *pbBits++; AddColor (&pTree, r, g, b, nColorBits, 0, &nLeafCount, pReducibleNodes); while (nLeafCount > nMaxColors) ReduceTree (nColorBits, &nLeafCount, pReducibleNodes); } pbBits += nPad; } break; case 32: // And another for 32-bit DIBs if (ds.dsBmih.biCompression == BI_BITFIELDS) { rmask = ds.dsBitfields[0]; gmask = ds.dsBitfields[1]; bmask = ds.dsBitfields[2]; } else { rmask = 0x00FF0000; gmask = 0x0000FF00; bmask = 0x000000FF; } rright = GetRightShiftCount (rmask); gright = GetRightShiftCount (gmask); bright = GetRightShiftCount (bmask); pdwBits = (DWORD*) ds.dsBm.bmBits; for (i=0; i<ds.dsBmih.biHeight; i++) { for (j=0; j<ds.dsBmih.biWidth; j++) { dwColor = *pdwBits++; b = (BYTE) ((dwColor & bmask) >> bright); g = (BYTE) ((dwColor & gmask) >> gright); r = (BYTE) ((dwColor & rmask) >> rright); AddColor (&pTree, r, g, b, nColorBits, 0, &nLeafCount, pReducibleNodes); while (nLeafCount > nMaxColors) ReduceTree (nColorBits, &nLeafCount, pReducibleNodes); } pdwBits = (DWORD*) (((BYTE*) pdwBits) + nPad); } break; default: // DIB must be 16, 24, or 32-bit! return NULL; } // 现在第二次遍历像素,把它复成调色板的值~ //得到调色板 nIndex = 0; GetRGBQUADs (pTree, g_pColors, &nIndex); g_nColorCount_Real = nIndex; //实际调色板数量(小于等于最大颜色数量) return pTree; } void AddColor (NODE** ppNode, BYTE r, BYTE g, BYTE b, UINT nColorBits, UINT nLevel, UINT* pLeafCount, NODE** pReducibleNodes) { int nIndex, shift; static BYTE mask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; // If the node doesn't exist, create it if (*ppNode == NULL) *ppNode = CreateNode (nLevel, nColorBits, pLeafCount, pReducibleNodes); // Update color information if it's a leaf node if ((*ppNode)->bIsLeaf) { (*ppNode)->nPixelCount++; (*ppNode)->nRedSum += r; (*ppNode)->nGreenSum += g; (*ppNode)->nBlueSum += b; if((*ppNode)->nPixelCount > g_nMaxPixelCount) g_nMaxPixelCount = (*ppNode)->nPixelCount; } // Recurse a level deeper if the node is not a leaf else { shift = 7 - nLevel; nIndex = (((r & mask[nLevel]) >> shift) << 2) | (((g & mask[nLevel]) >> shift) << 1) | ((b & mask[nLevel]) >> shift); AddColor (&((*ppNode)->pChild[nIndex]), r, g, b, nColorBits, nLevel + 1, pLeafCount, pReducibleNodes); } } NODE* CreateNode (UINT nLevel, UINT nColorBits, UINT* pLeafCount, NODE** pReducibleNodes) { NODE* pNode; if ((pNode = (NODE*) HeapAlloc (GetProcessHeap (), HEAP_ZERO_MEMORY, sizeof (NODE))) == NULL) return NULL; pNode->bIsLeaf = (nLevel == nColorBits) ? TRUE : FALSE; if (pNode->bIsLeaf) (*pLeafCount)++; else { // Add the node to the reducible list for this level pNode->pNext = pReducibleNodes[nLevel]; pReducibleNodes[nLevel] = pNode; } return pNode; } void ReduceTree (UINT nColorBits, UINT* pLeafCount, NODE** pReducibleNodes) { int i; NODE* pNode; UINT nRedSum, nGreenSum, nBlueSum, nChildren; // Find the deepest level containing at least one reducible node for (i=nColorBits - 1; (i>0) && (pReducibleNodes[i] == NULL); i--); // Reduce the node most recently added to the list at level i pNode = pReducibleNodes[i]; pReducibleNodes[i] = pNode->pNext; nRedSum = nGreenSum = nBlueSum = nChildren = 0; for (i=0; i<8; i++) { if (pNode->pChild[i] != NULL) { nRedSum += pNode->pChild[i]->nRedSum; nGreenSum += pNode->pChild[i]->nGreenSum; nBlueSum += pNode->pChild[i]->nBlueSum; pNode->nPixelCount += pNode->pChild[i]->nPixelCount; HeapFree (GetProcessHeap (), 0, pNode->pChild[i]); pNode->pChild[i] = NULL; nChildren++; } } pNode->bIsLeaf = TRUE; pNode->nRedSum = nRedSum; pNode->nGreenSum = nGreenSum; pNode->nBlueSum = nBlueSum; //更新节点的最大像素数量。 if(pNode->nPixelCount > g_nMaxPixelCount) g_nMaxPixelCount = pNode->nPixelCount; *pLeafCount -= (nChildren - 1); }
备注:上面代码中,树节点的定义如下:
typedef struct _NODE {
BOOL bIsLeaf; // TRUE if node has no children (是否是叶子节点)
UINT nPixelCount; // Number of pixels represented by this leaf (代表的像素数量)
UINT nRedSum; // Sum of red components
UINT nGreenSum; // Sum of green components
UINT nBlueSum; // Sum of blue components (B通道分量总和)
struct _NODE* pChild[8]; // Pointers to child nodes (子结点)
struct _NODE* pNext; // Pointer to next reducible node
BYTE nColorIndex; // 仅对叶子节点有效,表示此节点代表的颜色在调色板中的索引!存储到BMP文件时有用。
} NODE;
上面的方法返回一个八叉树的根节点指针,然后我们就可以根据这棵树,生成索引图像和调色板,方法是重新遍历图像,根据RGB的值,在树之间向更深的方向导航,直到遇到叶子节点,那么叶子节点上可以计算出该像素在索引图像的中的RGB值。在另存为 BMP 时,这个RGB值被放到索引图像的调色板中。下面的方法,我用一个24BPP的像素数据去模拟出索引图像的显示效果,因此 g_lpBits 是一块24bpp的图像处理,但是我将它设置成降级后的颜色,并在窗口中展示出来:
//生成八叉树降级后的位图 void CreateOctreeBitmap (NODE* pTree, UINT nMaxColors, UINT nColorBits) { int bpp = g_BmInfo.bmiHeader.biBitCount; static BYTE mask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; // 现在第二次遍历像素,把它复成调色板的值~ int i, j; UINT nIndex, nLevel, shift; NODE* pNode = NULL; BYTE *pbBits, r, g, b; int stride = (g_BmInfo.bmiHeader.biWidth * bpp + 31)/32 *4; int nPad = stride - (g_BmInfo.bmiHeader.biWidth *bpp + 7) / 8; if(bpp == 24 || bpp == 32) { pbBits = (BYTE*) g_lpBits; for (i=0; i<g_BmInfo.bmiHeader.biHeight; i++) { for (j=0; j<g_BmInfo.bmiHeader.biWidth; j++) { //*pbBits = 0xff; b = *pbBits; g = *(pbBits+1); r = *(pbBits+2); pNode = pTree; nLevel = 0; while(!pNode->bIsLeaf) { shift = 7 - nLevel; nIndex = (((r & mask[nLevel]) >> shift) << 2) | (((g & mask[nLevel]) >> shift) << 1) | ((b & mask[nLevel]) >> shift); pNode = pNode->pChild[nIndex]; nLevel++; } //取颜色 *pbBits = (BYTE)(pNode->nBlueSum/pNode->nPixelCount); *(pbBits+1)= (BYTE)(pNode->nGreenSum/pNode->nPixelCount); *(pbBits+2)= (BYTE)(pNode->nRedSum/pNode->nPixelCount); pbBits += (bpp/8); } pbBits += nPad; } } return; }
该算法如果选择的颜色数量太低(比如低于4),则很可能最终整个图像只有一种颜色,这是因为算法为了满足不超过颜色数量的要求,在收缩子结点时,使一次收缩多个子结点的(最多可以从 8 个叶子结点收缩成1个叶子节点,即 8 个调色板颜色降低为 1 个),可见这种节点收缩使得调色板颜色数量的变化是“跳跃性”的,因此实际调色板的颜色数量不一定总是等于设置的最大颜色数量,有时实际颜色数量会比设定的最大颜色数量小。所以通常也不能期待八叉树法能生成只有两种颜色数量的二元位图(从某个最低颜色数量开始可能会“突变”到全图都被一种颜色填充)。二元位图通常是通过选定一个阈值去重设像素得到的。
最后是用我的代码绘制出的八叉树效果,绘制是通过递归函数来完成的,这个代码并不复杂,这里我就不贴了。在这里假设每个节点具有一个面向的方向,例如根节点是面向下方生长,其角度就是PI/2。然后向八个角度方向生长出子结点,通过递归调用绘制出整个树,中间节点是空白的圆形,叶子节点代表调色板中的一个颜色,并且用该调色板颜色填充。
通过调整参数(树枝长短,节点占据的角度等)可以绘制出各种形态的八叉树,在源码中我把代表像素数量较多的节点绘制的更大一些,代表像素数量少的绘制小一些。下面是一些早期绘制出来的八叉树,中间的一副因为设置的子结点角度关系,不能看出根节点在何处。右边的一幅图,因为子结点伸展角度小且树枝较长,所以能很清晰的看出节点在树中的深度。下图中我根据我自己的第一印象分别取了名字,现在再看,左边和右边的也好像鸡冠花,菜花,扇子,中间的好像城市地铁交通图,右侧的叫做裙子是因为感觉好像女生跳舞用的舞裙。我还制作出八叉树的生成和合并过程的动画(有这个想法是因为我曾经看到别人写的八皇后算法的树生成动画),使用菜单View中的查看动画,即可看到八叉树算法过程中树的动态变化过程(为了加快动画过程,这部分功能可能并没有完整遍历图像,因此动画中产生的树可能和查看八叉树的树有所不同)。
源码下载:
最后是我修改后的范例的源码下载连接:(该范例可以把降级后的结果保存为BMP格式的索引图像)
http://files.cnblogs.com/hoodlum1980/Colors_src.rar
这里简单介绍该范例的使用方法,用菜单打开,打开一个真彩色的BMP位图,然后点击Optimized Palette 菜单可以弹出一个对话框,在该对话框中,设置的第一项 SignicantColorBits 表示八叉树的深度可以最大达到多大(1~8,默认值为6),在颜色被降级以后,由于树的深度会减小,所以该值设置的太大的话也没有什么意义。MaxColorCount 表示索引图像最多的颜色数量(1~256)。其他两个为显示值,一个是实际调色板数量,在保存为BMP索引图像时,我将使用八叉树代表的实际的调色板数量(而不是固定为16或者256)。另一个是表示八叉树中的所有叶子节点中,每个叶子节点都有一个属性:所代表的像素数量,g_nMaxPixelCount 表示的它们中的最大值。在生成索引图像以后,即可看到下方显示出索引图像的视觉效果,右侧是其调色板。在View菜单中点击“重新绘制八叉树图”,即可看到我绘制的八叉树的图像。通过View下面的其他两个菜单切换显示位图或者八叉树图。
这里是原始范例的代码:
http://www.microsoft.com/msj/archive/s3f1a.htm
注意,如果要使用这个程序之前,必须先把显示器调整到256色模式(XP中隐藏了低级别模式,需要点击监视器的高级按钮),然后点击Option下面的菜单可以看到不同调色板对应的索引图像效果。另外,这个网址仅仅提供的是源码,需要自己创建 Windows 应用程序工程。
参考资料:
(1)http://www.microsoft.com/msj/archive/S3F1.aspx;
<<wicked code>> -- Jeff Prosise
维护记录:
(1)增加八叉树动画演示效果。2010-10-29。
BYTHEWAY:再添加动画功能时,我无意中犯了一个“GDI 对象泄露”的BUG,由于创建的 HBRUSH 没有全部被 Delete,导致输出的帧数达到 140 以上时,窗口开始显示异常。我画了很大精力才定位到这个 BUG 并将其修复。。。
http://www.cnblogs.com/hoodlum1980/archive/2010/10/27/1862955.html