【ML】机器学习分类算法大总结(最全分类算法从LR、SVM、RF到XGBoost、lightgbm、deepforest等)

本文汇总了多种机器学习分类算法,包括LogisticRegression、SVM、KNeighborsClassifier、随机森林等,并在scikit-learn的乳腺癌数据集上进行了实践,展示了如何计算模型性能指标并绘制ROC曲线。
摘要由CSDN通过智能技术生成

介绍

今天整理了学术界、工业界常用的分类算法,主要包括,LogisticRegression、SGDClassifier、SVM、KNeighborsClassifier、GaussianNB、DecisionTreeClassifier、BaggingClassifier、RandomForestClassifier、ExtraTreesClassifier、AdaBoostClassifier、GradientBoostingClassifier、VotingClassifier、XGBClassifier、LGBMClassifier、CascadeForestClassifier、StackingClassifier

数据

此次教程使用的是scikit-learn中自带的乳腺癌分类数据集。

from sklearn.datasets import load_breast_cancer

# 数据集导入
dataset = load_breast_cancer(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值