【目标检测】yolov7改进系列:主干网络中添加CBAM注意力机制网络

本文介绍了如何在YOLOv7目标检测模型中添加CBAM注意力机制,以提高网络对图像前景和上下文信息的关注。CBAM包括通道注意力和空间注意力模块,可串联应用于网络。通过修改`common.py`、`yolo.py`和`.yaml`配置文件实现集成,并提供了训练自定义数据集的教程链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.CBAM注意力机制介绍

理论来源:
https://arxiv.org/pdf/1807.06521.pdf

在这里插入图片描述
Convolutional Block Attention Module (CBAM)由两个模块构成,分别为通道注意力(CAM)和空间注意力模块(SAM),CAM可以使网络关注图像的前景,使网络更加关注有意义的GT区域,而SAM可以让网络关注到整张图片中富含上下文信息的位置。

这两个模块即插即用,建议串行加入到网络中(很多实验证明串行比并行好,但我认为,具体情况要具体分析,不同数据集结果会不同,不断尝试,哪个效果好就用哪个),下面的展示的代码是串行方法。

2.修改代码

第一步修改common.py

在common.py增加代码:

class Ch
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值