题目描述:
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入:
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1< n <=1000, 0< m< 100000, s != t)
输出:
输出 一行有两个数, 最短距离及其花费。
样例输入:
3 2
1 2 5 6
2 3 4 5
1 3
0 0
样例输出:
9 11
来源:
2010年浙江大学计算机及软件工程研究生机试真题
这道题使用Dijkstra最短路径算法即可,只需多加一个当路径长度相同时选择花费最小的判断。MAX值要设大一点,我一开始设的10000,Wrong Answer。
#include<stdio.h>
#include<string.h>
#define MAX 10000000
int n, m;
int sd = 0, lc = 0;//最短路径,最少花费
int visited[1001];
int dist[1001][1001];//长度
int cost[1001][1001];//花费
int disp[1001];//st到各个点的最短路径
int cosp[1001];
int dijk(int st, int en){
sd= 0;
lc= 0;
int u;
int min;
int i, j;
memset(visited, 0, sizeof(visited));
for(int p= 1; p<= n; p++){
disp[p]= MAX;
cosp[p]= MAX;
}
disp[st]= 0;//到本身距离为0
cosp[st]= 0;
for(i= 1; i<= n; i++){
u= -1;
min= MAX;
for(j= 1; j<= n; j++){
if(disp[j]< min && visited[j]== 0){
min= disp[j];
u= j;
}
}
if(u== -1){//st点与其他点不相连
break;
}
visited[u]= 1;
for(int v= 1; v<= n; v++){
if(dist[u][v]< MAX && visited[v]== 0){
if(dist[u][v]+ disp[u]< disp[v]){
disp[v]= dist[u][v]+ disp[u];
cosp[v]= cost[u][v]+ cosp[u];
}
else if(dist[u][v]+ disp[u]== disp[v]){
if(cost[u][v]+ cosp[u]< cosp[v]){
cosp[v]= cost[u][v]+ cosp[u];
}
}
}
}
}
sd=disp[en];
lc=cosp[en];
return 0;
}
int main(){
int i;
int a, b, d, p;
int st, en;
while(scanf("%d %d", &n, &m)!=EOF){
if(n==0 && m==0){
break;
}
for(int p= 1; p<= n; p++){
for(int q= 1; q<= n; q++){
dist[p][q]= MAX;
cost[p][q]= MAX;
}
}
for(i= 0; i< m; i++){
scanf("%d %d %d %d", &a, &b, &d, &p);
dist[a][b]= d;
cost[a][b]= p;
dist[b][a]= d;
cost[b][a]= p;
}
scanf("%d %d", &st, &en);
dijk(st, en);
printf("%d %d\n", sd, lc);
}
return 0;
}