【Dijkstra堆优化】【BZOJ 3040】 最短路(road)

该博客介绍了如何使用Dijkstra算法并结合堆优化来解决BZOJ 3040题目,即在一个有向图中找到点1到点N的最短路径。博主首先分享了题目的输入输出格式和样例,并讨论了在处理大量边时,常规堆可能导致空间问题,因此推荐使用配对堆(pairing heap)以实现更高效的解决方案。文中还提到了尝试使用SPFA算法但因时间复杂度过高导致超时的问题。
摘要由CSDN通过智能技术生成

传送门~

Description

submit
Time Limit: 60 Sec Memory Limit: 200 MB

N个点,M条边的有向图,求点1到点N的最短路(保证存在)。
1<=N<=1000000,1<=M<=10000000

Input

第一行两个整数N、M,表示点数和边数。
第二行六个整数T、rxa、rxc、rya、ryc、rp。

前T条边采用如下方式生成:
1.初始化x=y=z=0。
2.重复以下过程T次:
x=(x*rxa+rxc)%rp;
y=(y*rya+ryc)%rp;
a=min(x%n+1,y%n+1);
b=max(y%n+1,y%n+1);
则有一条从a到b的,长度为1e8-100*a的有向边。

后M-T条边采用读入方式:
接下来M-T行每行三个整数x,y,z,表示一条从x到y长度为z的有向边。

1<=x,y<=N,0

Output

一个整数,表示1~N的最短路。

Sample Input

3 3

0 1 2 3 5 7

1 2 1

1 3 3

2 3 1

Sample Output

2

HINT

【注释】

请采用高效的堆来优化Dijkstra算法。

思路

这题就如题中所说,用Dijkstra堆优化,深表不服的我写了个spfa结果真的超时了
这里写图片描述
然后乖乖去写Dijkstra堆优化
发现这题卡空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值