生物医学工程方向——SCI投稿经验分享 (Ultrasound in Medicine & Biology)

本文分享了一篇关于生物医学工程方向的SCI论文投稿经历,包括期刊选择、投稿流程、修改及录用过程等关键信息,最终成功被《医学与生物学超声》期刊收录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Today,接到了sci的录用通知,有点小激动,此刻记录一下自己如何披荆斩棘、浑水摸鱼!

在这里插入图片描述

期刊简介:

Journal: Ultrasound in Medicine & Biology 《医学与生物学超声》
ISSN:0301-5629
CiteScore:5.4
Impact Factor:3.694
投稿官网:https://www.sciencedirect.com/journal/ultrasound-in-medicine-and-biology
分区: SCI 三区

投稿时间线

提交初稿——2022/7/4
返回意见——2022/9/5(一共两个审稿人,大概15个意见左右,不用加实验,限制一个月时间回过去)
一修后提交——2022/10/4(拖延症拖到最后一天hhhh)
一修返回意见——2022/10/30(针对一修的意见回复回了三个小问题,论文有条件的接受)
二修后提交——2022/10/31 (不要羡慕哥的速度,没办法)
接受——2022/11/6

历时:4个月左右,基本算是正常水平吧在这里插入图片描述

个人情况

本人上海某理工高校,强势双非,做医学图像的,拿到了某医院的数据集,之前有一篇中文核心,但是学院要求毕业至少两篇,于是做了一下肿瘤的传统分类,没用深度学习 ,改成了英文。至于论文创新点嘛,嘿嘿,数据集是新的这难道不算最大的创新吗!

在这里插入图片描述

查找期刊

师兄师姐基本没有做这个方向的,所以只能自食其力。哦对了,俺投期刊只投不开源的(即不要钱、免费、无版面费)

无意中在CSDN上看到了一篇关于CIBM的投稿经验,
链接:https://blog.csdn.net/u014264373/article/details/119420470.
觉得自己论文创新不错的话,又不敢试顶刊的兄弟可以参考这个。
我于是查了查CIBM官网,还真有挺多相关的论文,而且期刊确实不错,虽然是三区的,但有上升的潜力,就找了个latex模板投了。
大概20天不到直接给拒了,理由就是类似方向的论文太多,创新性不够啥的,都是套路。
在这里插入图片描述

于是又陷入了漫长的论文寻找过程。。。
又无意中看到一篇关于生物医学工程SCI期刊投稿的博客,
链接:https://www.cnblogs.com/burellow/archive/2013/05/26/3100446.html.
此篇文章简直就是做生物医学工程想投(水)SCI的指路明灯!
选了一个MEDICAL PHYSICS,看起来比较水,投稿的时候发现研究性论文超过10页的部分一页收取300美元,彩图一张也要几百美元,果断放弃,所以如果有论文篇幅不大,论文图片用黑白图显示也无太大影响的可以考虑这个期刊。

最后,终于找到了——ULTRASOUND IN MEDICINE AND BIOLOGY!

投稿过程及注意事项

1、首先官网有投稿的流程,大致看一下,Down一下latex模板修改自己的论文格式。注意论文最后写图、表的标题。
2、上传材料,需要推荐信,直接百度一下,论文图片需要例如jpg格式单独提交。注意提交时必须要求提供三个推荐审稿人(问老师)。
3、提交完成,睡觉,保护一下发际线。在这里插入图片描述

修改及录用

整体来说,期刊的工作人员效率还是挺快的,基本论文投过去不会拖着你,但是刚开始最好不要太快的得到结果,一旦with editor后直接Decision in process,基本就凉。2个月左右的时间外审给你意见,限制一个月内修改回去,此时需注意参考文献的格式,可以查找该期刊里已经发表的论文,参考文献要求按名字字母排序。
修改回去之后,基本问题不大,只要回复意见不是太离谱的话,就等着小修和录用吧!

其他

附大家投稿的情况:https://www.medsci.cn/sci/submit.do?id=db696954.
在这里插入图片描述
在这里插入图片描述

最后

想写点自己的一些感悟。
经历了这几年的疫情尤其是今年上半年的上海,终于让我有时间静下心来思考,面对生活最真实的本质。
就像我之前看到的一篇论文的致谢部分:
我开始意识到那些我以为的那些一直会在的人和感情可能并没有我想象的那么强大。
一帆风顺时,我们总是揣着一颗不安分的心向前走,只有当生活遭遇坎坷时,我们才会停下来审视自己身边所拥有的一切。
过去的我不愿甘于平凡,不愿机械地重复每一天的工作过着毫无新意的生活而沦为时代的尘埃。
事实上能够拥有平淡而普通的生活是多么幸运,所有的那些“习以为常”其实都是“来之不易”。
不需要那么多与众不同,其实人生最珍贵的东西我们早已拥有并且一直就在我们身边,简单重复的生活就是幸福最本质的样子吧。
过去那些想要逃离的想要放弃的都成了现在的我最想要抓住的最想要享受的快乐,那些我觉得理所当然的不曾在意的都成了现在的我最想要感谢的。

希望大家珍惜当下,且行且珍惜吧!大家加油!!!
最后觉得写的不错的话,求点赞,评论,收藏。
在这里插入图片描述

<think>嗯,用户的问题是关于如何通过超声SAM适配器对SAM(Segment Anything Model)进行调整以实现乳腺病变分割的。首先,我需要理解SAM的基本架构和它的适配方法。SAM是一个通用的图像分割模型,但在医学图像,特别是超声图像中,由于噪声大、边界模糊等特点,直接应用可能效果不佳。因此,需要对其进行适配调整。 根据引用中的信息,比如引用[3]提到使用了条件生成对抗网络(cGAN)并添加了空洞卷积层来学习不同分辨率的特征,这可能是一个有用的思路。此外,频道方向加权块和特定的损失函数(如SSIM和L1范数)也被用来提升分割效果。这些方法可能可以应用到SAM的适配器中。 接下来,用户需要具体的实现步骤。首先,可能需要分析SAM的架构,确定在哪里插入适配模块。比如,在编码器中加入轻量级适配层,或者在解码器中进行特征融合。然后,针对超声图像的特点,可能需要设计特定的模块,比如多尺度特征提取或边界细化模块,类似于FRBNet中的反馈细化边界网络(引用[1])。 另外,数据预处理和增强也是关键,因为超声图像的质量可能参差不齐。可能需要使用动态对比度增强等技术来改善图像质量。在训练策略上,迁移学习和两阶段训练可能有效,先冻结SAM的大部分参数,只训练适配层,再微调整个网络。 还需要考虑如何结合领域知识,比如形状特征和边界信息,可能需要在损失函数中加入边界敏感的部分,如Dice损失和边界加权损失的组合。同时,引用[3]提到的分类阶段使用的统计特征,可能可以用于后续的良恶性分类,但用户当前的问题集中在分割部分。 最后,实现步骤可能包括代码层面的修改,比如在SAM的编码器中插入适配层,定义新的损失函数,并进行训练和验证。需要确保代码示例正确,并参考现有的医学图像分割框架,如nnUNet或MONAI,以提高可靠性。</think>### Ultrasound SAM Adapter实现乳腺超声图像病灶分割的关键步骤 根据现有医学影像分割领域的研究成果[^1][^3],实现SAM模型在乳腺超声图像中的适配需要以下核心步骤: 1. **特征适配层设计** - 在SAM的ViT编码器中插入轻量级适配模块,公式表示为: $$ h_{adapted} = h_{SAM} + \alpha \cdot \text{Conv3x3}(h_{SAM}) $$ 其中$\alpha$为可学习参数,用于保留原始特征的同时注入超声图像特征[^3] - 添加多尺度特征提取模块,使用空洞卷积组合: ```python class DilatedConvBlock(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(256, 128, 3, dilation=2) self.conv2 = nn.Conv2d(256, 128, 3, dilation=4) ``` 2. **边界敏感机制** 采用FRBNet的边界细化思想,在解码阶段建立双路径特征交互: ```python def boundary_refinement(mask_feat, boundary_feat): edge_weights = torch.sigmoid(boundary_feat) return mask_feat * (1 + edge_weights) ``` 3. **超声图像预处理** - 动态对比度增强算法: $$ I_{enhanced} = \frac{I - \mu}{\sigma + \epsilon} \cdot \gamma + \beta $$ 其中$\gamma,\beta$为自适应参数,根据图像局部统计特性计算 4. **混合损失函数** 结合结构相似性和边界约束: $$ \mathcal{L} = \lambda_1 \text{Dice}(y,\hat{y}) + \lambda_2 \text{SSIM}(y,\hat{y}) + \lambda_3 \sum_{p\in \partial}||\nabla \hat{y}_p||_2 $$ 参数设置$\lambda_1=0.6, \lambda_2=0.3, \lambda_3=0.1$ 5. **实现代码框架** ```python class SAMAdapter(nn.Module): def __init__(self, sam_model): super().__init__() self.sam = sam_model self.adapter_layers = nn.ModuleList([ AdapterBlock(hidden_size=256) for _ in range(4) # 在4个关键层插入适配器 ]) def forward(self, x): features = self.sam.image_encoder(x) for i, layer in enumerate(self.adapter_layers): features[i] = layer(features[i]) return self.sam.mask_decoder(features) ```
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值