医学图像处理方向——SCI投稿经验分享 (Biomedical Signal Processing and Control)

医学图像处理方向——SCI投稿经验分享 (Biomedical Signal Processing and Control)

前天参加华为杯建模搞到凌晨1点多,回到宿舍躺在床上刷B站,然后就接到了Biomedical Signal Processing and Control期刊的录用通知,分享下自己的投稿过程。
在这里插入图片描述

期刊简介:

Journal: Biomedical Signal Processing and Control
ISSN:1746-8094
CiteScore:8.2
Impact Factor:5.1
投稿官网:https://www.sciencedirect.com/journal/biomedical-signal-processing-and-control
分区: 中科院二区

下图是letpub上的期刊信息:
在这里插入图片描述

投稿时间线

提交初稿——2023/7/11
返回意见——2023/8/1(四个审稿人的意见,每个审稿人大概3-5个问题)
一修后提交——2023/8/31
接受——2023/9/23

历时:2个多月,审稿相当快。为什么这么说,因为期刊意见返回时暑期放假在家,我拖了整整一个月,直到去学前一天30号才开始整理意见,通宵把意见返回了。如果不是拖延症,这个期刊大概能一个多月就录了,所以期刊效率真的很快(针对我这篇论文hhh)。

论文方向

论文主要是对医院收集的一些超声数据进行定位检测。结合YOLO最新的和经典的版本进行结合改进,然后也有剪枝轻量化的部分,使得最终模型在提升精度的同时也减少了推理时间,在模型后处理部分也加了个聚类方法。总体来说,论文就是检测模型的优化改进吧。

投稿过程

1、找一篇elsevier的latex模板写论文内容。可以下载几个本期刊的论文,看看大概的内容和参考文献格式。
2、提交初稿时,最好注册通讯作者的账号,这样你就可以用他账号看论文状态了。登录之后上传文章PDF,需要推荐信,可以百度,注意提交时必须要求提供三个推荐审稿人(问自己老师)。
3、在状态进入Under Review后,期刊会给通讯作者邮箱发送一个追踪进度的链接,可以看到论文的审稿进度。
4、期刊找了13个审稿人,但是只有4个审稿人审了或者说回了意见。有让根据最新算法加对比实验的,有让建议开源代码的,有让对文章部分内容进行解释的,有让修改文章格式的,总之一一回复,按照自己的思考去仔细解释,不要敷衍,比如拒绝开源代码的话要写一些客观的不可抗力的原因。
5、将修改后的论文上传,此时需要上传tex源文件,还必须要上传作者声明,可参考https://zhuanlan.zhihu.com/p/648983881
6、直接Accept,这我也没想到,很意外,运气很棒!

其他

附一些投稿的情况:https://www.letpub.com.cn/index.php?journalid=1175&page=journalapp&view=detail.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最后

不要高估自己一年努力所能拥有的结果,也不要低估自己十年努力所能拥有的结果。
最近自己也步入了新的人生阶段,没啥好说的,希望自己保持好的心态,找到自己感兴趣的东西并坚持学下去吧。
祝大家发论文早日顺利Accept!

### 生物医学信号处理与控制中的信息技术 #### 软件工具 在生物医学信号处理领域,多种软件工具被广泛应用于数据采集、预处理以及分析。MATLAB 是一种常用的选择,提供了丰富的函数库用于滤波器设计、频谱分析等功能[^1]。Python 也因其灵活性和强大的社区支持而受到青睐,SciPy 和 NumPy 库能够高效地执行数值计算任务;Pandas 则擅长于时间序列数据分析。 #### 算法应用 针对特定类型的生理信号如心电图(ECG)、脑电图(EEG),开发了专门的算法来提取特征并识别模式。例如,在ECG监测中采用自适应滤波技术去除噪声干扰,提高诊断准确性。对于复杂疾病预测模型构建,则可以利用机器学习方法,像随机森林(Random Forests)[^3]这样的集成学习算法能有效评估不同变量的重要性,从而帮助医生做出更精准的判断。 #### 实际应用场景 实际医疗环境中,这些技术和理论得到了广泛应用。远程健康监护系统通过无线传感器网络收集患者生命体征参数,并借助云计算平台实现大规模并发处理能力。此外,在手术室内的实时监控设备同样依赖先进的控制系统确保各项操作安全可靠,这涉及到自动化程度较高的闭环反馈机制的设计与优化工作[^2]。 ```python import numpy as np from scipy.signal import butter, lfilter def apply_butterworth_filter(data, cutoff_freq, fs=500): nyquist = 0.5 * fs normal_cutoff = cutoff_freq / nyquist b, a = butter(5, normal_cutoff, btype='low', analog=False) filtered_data = lfilter(b, a, data) return filtered_data ```
评论 111
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值