图像超分辨率重建之SRCNN

本文介绍了SRCNN(Super-Resolution Convolutional Neural Network),这是深度学习在图像超分辨率重建领域的开创性工作。SRCNN利用三层卷积神经网络实现从低分辨率图像到高分辨率图像的转换,包括图像块提取、非线性映射和重建三个步骤。在训练和测试过程中,详细阐述了数据预处理、损失函数选择、网络结构以及如何处理边界问题,以实现高质量的图像重建。
摘要由CSDN通过智能技术生成

新版本请访问简书链接:https://www.jianshu.com/p/dfe85a3c2096

图像超分辨率重建:指通过低分辨率图像或图像序列恢复出高分辨率图像。高分辨率图像意味着图像具有更多的细节信息、更细腻的画质,,这些细节在高清电视、医学成像、遥感卫星成像等领域有着重要的应用价值。

    Super-Resolution Convolutional Neural Network本篇文章讲述的是深度学习在图像超分辨率重建问题的开山之作SRCNN(Super-Resolution Convolutional Neural Network)。香港中文大学Dong等将卷积神经网络应用于单张图像超分辨率重建上(Image Super-Resolution Using Deep Convolutional Networks, 论文与代码: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)。

可参考代码(非官方;Tensorflow版本)

评论 107
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值