计算矩阵A与矩阵B的欧式距离

本文从向量的欧式距离出发,逐步解析如何扩展到矩阵的欧式距离计算。通过具体的数学推导,展示了如何将两个矩阵之间的距离表示为一个新的矩阵,并且强调了计算过程中向量的L2范数和向量乘法的关系。
摘要由CSDN通过智能技术生成

1. 从向量的欧式距离谈起

向量x为1x3的行向量,向量y为1x3的行向量,求向量x与向量y的欧式距离
x = ( a 11 a 12 a 13 ) x = \begin{pmatrix}a_{11} & a_{12} & a_{13}\\\end{pmatrix} x=(a11a12a13)
y = ( b 11 b 12 b 13 ) y = \begin{pmatrix}b_{11} & b_{12} & b_{13}\\\end{pmatrix} y=(b11b12b13)

d i s t x , y = ( a 11 − b 11 ) 2 + ( a 12 − b 12 ) 2 + ( a 13 − b 13 ) 2 dist_{x,y}=\sqrt{(a_{11} - b_{11})^2 + (a_{12} - b_{12})^2 + (a_{13} - b_{13})^2} distx,y=(a11b11)2+(a12b12)2+(a13b13)2

变形为:
d i s t x , y = a 11 2 + a 12 2 + a 13 2 + b 11 2 + b 12 2 + b 13 2 − 2 a 11 b 11 − 2 a 12 b 12 − 2 a 13 b 13 dist_{x,y}=\sqrt{a_{11}^2 + a_{12}^2 + a_{13}^2 + b_{11}^2 + b_{12}^2 + b_{13}^2 - 2a_{11}b_{11} - 2a_{12}b_{12} - 2a_{13}b_{13} } distx,y=a112+a122+a132+b112+b122+b1322a11b112a12b122a13b13

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值