人群计数之MCNN

本文介绍了人群计数的重要性,并详细解析了Multi-column Convolutional Neural Network(MCNN)的原理和应用,包括网络结构、损失函数、训练方式以及评估指标。MCNN利用多尺度卷积核适应不同大小的人头,解决了高密度人群图像计数的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新版本请访问简书链接:https://www.jianshu.com/p/a1006c4b6fdc

人群计数: 目的在于统计场景中的人群数目。人群计数在视频监控、交通监测、公共安全、城市规划以及建设智能商超等方面有着广泛应用,如监控某个人群易聚集区域的人群数目,防止由于人群密度过大,导致人群失控发生踩踏等事件。

Multi-column Convolutional Neural Network:本文章是使用深度学习中的卷积神经网络实现人群计数。上海科技大学Yingying Zhang等人将多列卷积神经网络应用于单张图像人群计数问题上(Single-Image Crowd Counting via Multi-Column Convolutional Neural Network)。

论文与代码:

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf

https://github.com/svishwa/crowdcount-mcnn  。

(由于笔者接触这个人群计数任务时的第一篇论文就是MCNN的,因此在这里选择这篇文章来讲述。而关于这个任务,在此之前也有不少论文,在此之后也是刷得很厉害,有很多更好的模型)

笔者复现的MCNN(Tensorflow版本):

到下列链接:https://www.jianshu.com/p/a1006c4b6fdc

 

一、人群计数方法分类



评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值