CovaMNet_Train_5way1shot py 程序分块儿解读

本文详细解读了CovaMNet_Train_5way1shot.py的各个部分,从基本import到Linux参数设置,再到模型定义和训练过程。重点介绍了AverageMeter类、学习率调整、训练和验证函数,以及模型保存和计算精度的函数。同时,阐述了数据加载和训练结束时的评估输出。
摘要由CSDN通过智能技术生成

CovaMNet_Train_5way1shot.py 程序分块儿解读

import 部分

基本import

import argparse
import os
import random
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import grad
import time
from torch import autograd
from PIL import ImageFile
import scipy as sp
import scipy.stats
import sys
sys.dont_write_bytecode = True

自己编写的两部分

  • dataset文件下的datasets_csv.py
  • models文件下的network.py

(1) from dataset.datasets_csv import Imagefolder_csv

(2)import models.network as CovaNet


Linux参数设置

ImageFile.LOAD_TRUNCATED_IMAGES = True
os.environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES']='0'

parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', default='/Datasets/miniImageNet--ravi', help='the path of the data')
parser.add_argument('--data_name', default='miniImageNet', help='miniImageNet|StanfordDog|StanfordCar|CubBird')
parser.add_argument('--mode', default='test', help='train|val|test')
parser.add_argument('--outf', default='./results/CovaMNet')
parser.add_argument('--resume', default='', type=str, help='path to the lastest checkpoint (default: none)')
parser.add_argument('--basemodel', default='Conv64', help='Conv64')
parser.add_argument('--workers', type=int, default=8)
#  Few-shot parameters  #
parser.add_argument('--imageSize', type=int, default=84)
parser.add_argument('--episodeSize', type=int, default=1, help='the mini-batch size of training')
parser.add_argument('--testepisodeSize', type=int, default=1, help='one episode is taken as a mini-batch')
parser.add_argument('--epochs', type=int, default=30, help='the total number of training epoch')
parser.add_argument('--episode_train_num', type=int, default=10000, help='the total number of training episodes')
parser.add_argument('--episode_val_num', type=int, default=1000, help='the total number of evaluation episodes')
parser.add_argument('--episode_test_num', type=int, default=600, help='the total number of testing episodes')
parser.add_argument('--way_num', type=int, default=5, help='the number of way/class')
parser.add_argument
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值