高等数学之“常用”篇

高等数学之“常用”篇

1. 常用的极限

  • lim ⁡ x → 0 ( 1 + x ) 1 x = e ; \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e; x0lim(1+x)x1=e;

  • lim ⁡ f ( x ) → 0 [ 1 + f ( x ) ] 1 f ( x ) = e ; \lim_{f(x) \to 0} [1 + f(x)]^{\frac{1}{f(x)}} = e; f(x)0lim[1+f(x)]f(x)1=e;

  • lim ⁡ x → 0 tan ⁡ x x = 1 ; \lim_{x \to 0}\frac{\tan{x}}{x} = 1; x0limxtanx=1;

  • lim ⁡ x → 0 1 − cos ⁡ x x 2 = 1 2 ; 或  lim ⁡ x → 0 1 − cos ⁡ x x 2 2 = 1 ; \lim_{x \to 0}\frac{1 - \cos{x}}{x^{2}} = \frac{1}{2};或\ \lim_{x \to 0}\frac{1 - \cos{x}}{\frac{x^{2}}{2}} = 1; x0limx21cosx=21; x0lim2x21cosx=1;

  • lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = 1 2 ; 或  lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 2 = 1 ; \lim_{x \to 0}\frac{\tan{x} - \sin{x}}{x^{3}} = \frac{1}{2};或\ \lim_{x \to 0}\frac{\tan{x} - \sin{x}}{\frac{x^{3}}{2}} = 1; x0limx3tanxsinx=21; x0lim2x3tanxsinx=1;

  • lim ⁡ x → 0 arcsin ⁡ x x = 1 ; \lim_{x \to 0}\frac{\arcsin{x}}{x} = 1; x0limxarcsinx=1;

  • lim ⁡ x → 0 arctan ⁡ x x = 1 ; \lim_{x \to 0}\frac{\arctan{x}}{x} = 1; x0limxarctanx=1;

  • lim ⁡ x → 0 ln ⁡ ( 1 + x ) x = 1 ; \lim_{x \to 0}\frac{\ln{(1 + x)}}{x} = 1; x0limxln(1+x)=1;

  • lim ⁡ x → 0 e x − 1 x = 1 ; \lim_{x \to 0}\frac{e^{x} - 1}{x} = 1; x0limxex1=1;

2. 常用的等价无穷小

  • sin ⁡ x ∼ x \sin{x} \sim x sinxx

  • tan ⁡ x ∼ x \tan{x} \sim x tanxx

  • 1 − cos ⁡ x ∼ x 2 2 1 - \cos{x} \sim \frac{x^{2}}{2} 1cosx2x2

  • tan ⁡ x − sin ⁡ x ∼ x 3 2 \tan{x} - \sin{x} \sim \frac{x^{3}}{2} tanxsinx2x3

  • arcsin ⁡ x ∼ x \arcsin{x} \sim x arcsinxx

  • arctan ⁡ x ∼ x \arctan{x} \sim x arctanxx

  • ln ⁡ ( 1 + x ) ∼ x \ln(1 + x) \sim x ln(1+x)x

  • e x − 1 ∼ x e^{x} - 1 \sim x ex1x

  • ( 1 + x ) 1 n − 1 ∼ x n (1 + x)^{\frac{1}{n}} - 1 \sim \frac{x}{n} (1+x)n11nx

  • a x − 1 ∼ x ln ⁡ a a^{x} - 1 \sim x\ln{a} ax1xlna

注意这里的变量是 x x x,并且 x → 0 x \to 0 x0

3. 常用的三角函数

3.1 函数关系

3.1.1 倒数关系

1. tan ⁡ α ⋅ cot ⁡ α = 1 ; 2. sin ⁡ α ⋅ csc ⁡ α = 1 ; 3. cos ⁡ α ⋅ sec ⁡ α = 1. \begin{array} {|c|c|} \hline\\ 1. & \tan{\alpha} \cdot \cot{\alpha} = 1; \\\\ \hline\\ 2. & \sin{\alpha} \cdot \csc{\alpha} = 1; \\\\ \hline\\ 3. & \cos{\alpha} \cdot \sec{\alpha} = 1. \\\\ \hline \end{array} 1.2.3.tanαcotα=1;sinαcscα=1;cosαsecα=1.

3.1.2 商数关系

1. tan ⁡ α = sin ⁡ α cos ⁡ α ; 2. cot ⁡ α = cos ⁡ α sin ⁡ α . \begin{array} {|c|c|} \hline\\ 1. &\displaystyle \tan{\alpha} = \frac{\sin{\alpha}}{\cos{\alpha}}; \\\\ \hline\\ 2. &\displaystyle \cot{\alpha} = \frac{\cos{\alpha}}{\sin{\alpha}}. \\\\ \hline \end{array} 1.2.tanα=cosαsinα;cotα=sinαcosα.

3.1.3 平方关系

1. sin ⁡ 2 α + cos ⁡ 2 α = 1 ; 2. 1 + cot ⁡ 2 α = csc ⁡ 2 α ; 3. 1 + tan ⁡ 2 α = sec ⁡ 2 α . \begin{array} {|c|c|} \hline\\ 1. & \sin^{2}{\alpha} + \cos^{2}{\alpha} = 1; \\\\ \hline\\ 2. & 1 + \cot^{2}{\alpha} = \csc^{2}{\alpha}; \\\\ \hline\\ 3. & 1 + \tan^{2}{\alpha} = \sec^{2}{\alpha}. \\\\ \hline \end{array} 1.2.3.sin2α+cos2α=1;1+cot2α=csc2α;1+tan2α=sec2α.

3.2 诱导公式

  • 奇变偶不变,符号看象限

1. sin ⁡ ( 2 k π + α ) = sin ⁡ α ; cos ⁡ ( 2 k π + α ) = cos ⁡ α ; tan ⁡ ( 2 k π + α ) = tan ⁡ α ; cot ⁡ ( 2 k π + α ) = cot ⁡ α . 2. sin ⁡ ( π + α ) = − sin ⁡ α ; cos ⁡ ( π + α ) = − cos ⁡ α ; tan ⁡ ( π + α ) = tan ⁡ α ; cot ⁡ ( π + α ) = cot ⁡ α . 3. sin ⁡ ( − α ) = − sin ⁡ α ; cos ⁡ ( − α ) = cos ⁡ α ; tan ⁡ ( − α ) = − tan ⁡ α ; cot ⁡ ( − α ) = − cot ⁡ α . 4. sin ⁡ ( π − α ) = sin ⁡ α ; cos ⁡ ( π − α ) = − cos ⁡ α ; tan ⁡ ( π − α ) = − tan ⁡ α ; cot ⁡ ( π − α ) = − cot ⁡ α . 5. sin ⁡ ( 2 π − α ) = − sin ⁡ α ; cos ⁡ ( 2 π − α ) = cos ⁡ α ; tan ⁡ ( 2 π − α ) = − tan ⁡ α ; cot ⁡ ( 2 π − α ) = − cot ⁡ α . 6. sin ⁡ ( π 2 ± α ) = cos ⁡ α ; cos ⁡ ( π 2 ± α ) = ∓ sin ⁡ α ; tan ⁡ ( π 2 ± α ) = ∓ cot ⁡ α ; cot ⁡ ( π 2 ± α ) = ∓ tan ⁡ α . \begin{array} {|c|l|l|} \hline\\ 1.& \sin{(2k\pi + \alpha)} = \sin{\alpha}; & \cos{(2k\pi + \alpha)} = \cos{\alpha}; \\\\ & \tan{(2k\pi + \alpha)} = \tan{\alpha}; & \cot{(2k\pi + \alpha)} = \cot\alpha. \\\\ \hline\\ 2.& \sin(\pi + \alpha) = -\sin\alpha; & \cos(\pi + \alpha) = - \cos\alpha; \\\\ & \tan(\pi + \alpha) = \tan\alpha; & \cot(\pi + \alpha) = \cot\alpha. \\\\ \hline\\ 3.& \sin(-\alpha) = -\sin\alpha; & \cos(-\alpha) = \cos\alpha; \\\\ & \tan(-\alpha) = -\tan\alpha; & \cot(-\alpha) = - \cot\alpha. \\\\ \hline\\ 4.& \sin(\pi - \alpha) = \sin\alpha; & \cos(\pi - \alpha) = -\cos\alpha; \\\\ & \tan(\pi - \alpha) = -\tan\alpha; & \cot(\pi - \alpha) = -\cot\alpha. \\\\ \hline\\ 5.& \sin(2\pi - \alpha) = -\sin\alpha; & \cos(2\pi - \alpha) = \cos\alpha; \\\\ & \tan(2\pi - \alpha) = -\tan\alpha; & \cot(2\pi - \alpha) = -\cot\alpha. \\\\ \hline\\ 6.& \sin(\frac{\pi}{2} \pm \alpha) = \cos\alpha; & \cos(\frac{\pi}{2} \pm \alpha) = \mp \sin\alpha; \\\\ & \tan(\frac{\pi}{2} \pm \alpha) = \mp \cot\alpha; & \cot(\frac{\pi}{2} \pm \alpha) = \mp \tan\alpha. \\\\ \hline \end{array} 1.2.3.4.5.6.sin(2+α)=sinα;tan(2+α)=tanα;sin(π+α)=sinα;tan(π+α)=tanα;sin(α)=sinα;tan(α)=tanα;sin(πα)=sinα;tan(πα)=tanα;sin(2πα)=sinα;tan(2πα)=tanα;sin(2π±α)=cosα;tan(2π±α)=cotα;cos(2+α)=cosα;cot(2+α)=cotα.cos(π+α)=cosα;cot(π+α)=cotα.cos(α)=cosα;cot(α)=cotα.cos(πα)=cosα;cot(πα)=cotα.cos(2πα)=cosα;cot(2πα)=cotα.cos(2π±α)=sinα;cot(2π±α)=tanα.

3.3 二角和差公式

1. cos ⁡ ( α ± β ) = cos ⁡ α ⋅ cos ⁡ β   ∓   sin ⁡ α ⋅ sin ⁡ β ; 2. sin ⁡ ( α ± β ) = sin ⁡ α ⋅ cos ⁡ β   ∓   cos ⁡ α ⋅ sin ⁡ β ; 3. tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α ⋅ tan ⁡ β . \begin{array}{|c|l|} \hline \\ 1.& \cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta \ \mp \ \sin\alpha \cdot \sin\beta; \\\\ \hline \\ 2.&\displaystyle \sin(\alpha \pm \beta) = \sin\alpha \cdot \cos\beta \ \mp \ \cos\alpha \cdot \sin\beta; \\\\ \hline \\ 3.&\displaystyle \tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \cdot \tan\beta}. \\\\ \hline \end{array} 1.2.3.cos(α±β)=cosαcosβ  sinαsinβ;sin(α±β)=sinαcosβ  cosαsinβ;tan(α±β)=1tanαtanβtanα±tanβ.

3.3 三角和公式

1. sin ⁡ ( α + β + γ ) = sin ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ sin ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ ; 2. cos ⁡ ( α + β + γ ) = cos ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ γ − cos ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ . \begin{array}{|c|l|} \hline \\ 1.& \sin(\alpha + \beta + \gamma) = \sin\alpha \cdot \cos\beta \cdot \cos\gamma + \cos\alpha \cdot \sin\beta \cdot \cos\gamma + \cos\alpha \cdot \cos\beta \cdot \sin\gamma - \sin\alpha \cdot \sin\beta \cdot \sin\gamma; \\\\ \hline \\ 2. & \cos(\alpha + \beta + \gamma) = \cos\alpha \cdot \cos\beta \cdot \cos\gamma - \cos\alpha \cdot \sin\beta \cdot \sin\gamma - \sin\alpha \cdot \cos\beta \cdot \sin\gamma - \sin\alpha \cdot \sin\beta \cdot \sin\gamma. \\\\ \hline \end{array} 1.2.sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγsinαsinβsinγ;cos(α+β+γ)=cosαcosβcosγcosαsinβsinγsinαcosβsinγsinαsinβsinγ.

3.4 和差积互化公式

3.4.1 积化和差公式

1. sin ⁡ α ⋅ cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] ; 2. cos ⁡ α ⋅ sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] ; 3. cos ⁡ α ⋅ cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] ; 4. sin ⁡ α ⋅ sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] . \begin{array}{|c|c|} \hline \\ 1.&\displaystyle \sin\alpha \cdot \cos\beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]; \\\\ \hline \\ 2.&\displaystyle \cos\alpha \cdot \sin\beta = \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)]; \\\\ \hline \\ 3.&\displaystyle \cos\alpha \cdot \cos\beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]; \\\\ \hline \\ 4.&\displaystyle \sin\alpha \cdot \sin\beta = -\frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]. \\\\ \hline \end{array} 1.2.3.4.sinαcosβ=21[sin(α+β)+sin(αβ)];cosαsinβ=21[sin(α+β)sin(αβ)];cosαcosβ=21[cos(α+β)+cos(αβ)];sinαsinβ=21[cos(α+β)+cos(αβ)].

3.4.2 和差化积公式

1. sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 ; 2. sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 ; 3. cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 ; 4. cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 . \begin{array}{|c|c|} \hline \\ 1.&\displaystyle \sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}; \\\\ \hline\\ 2.&\displaystyle \sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}; \\\\ \hline\\ 3.&\displaystyle \cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}; \\\\ \hline\\ 4.&\displaystyle \cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}. \\\\ \hline \end{array} 1.2.3.4.sinα+sinβ=2sin2α+βcos2αβ;sinαsinβ=2cos2α+βsin2αβ;cosα+cosβ=2cos2α+βcos2αβ;cosαcosβ=2sin2α+βsin2αβ.

3.5 倍角公式

3.5.1 二倍角公式

1. sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α ; 2. cos ⁡ 2 α = 1 − 2 sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = cos ⁡ 2 α − sin ⁡ 2 α ; 3. tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ α . \begin{array}{|c|c|} \hline\\ 1.&\displaystyle \sin2\alpha = 2\sin\alpha\cos\alpha; \\\\ \hline\\ 2.&\displaystyle \cos2\alpha = 1 - 2\sin^{2}\alpha = 2\cos^{2}\alpha - 1 = \cos^{2}\alpha - \sin^{2}\alpha; \\\\ \hline\\ 3.&\displaystyle \tan2\alpha = \frac{2\tan\alpha}{1 - \tan\alpha}. \\\\ \hline \end{array} 1.2.3.sin2α=2sinαcosα;cos2α=12sin2α=2cos2α1=cos2αsin2α;tan2α=1tanα2tanα.

3.5.2 降幂公式

1. sin ⁡ 2 α = 1 2 [ 1 − cos ⁡ 2 α ] . 2. cos ⁡ 2 α = 1 2 [ 1 + cos ⁡ 2 α ] ; \begin{array} {|c|c|} \hline\\ 1.&\displaystyle \sin^{2}\alpha = \frac{1}{2}[1 - \cos 2 \alpha]. \\\\ \hline\\ 2.&\displaystyle \cos^{2}\alpha = \frac{1}{2}[1 + \cos 2 \alpha]; \\\\ \hline \end{array} 1.2.sin2α=21[1cos2α].cos2α=21[1+cos2α];

3.5.3 半角公式

1. sin ⁡ 2 α 2 = 1 2 ( 1 − cos ⁡ α ) ; 2. cos ⁡ 2 α 2 = 1 2 ( 1 + cos ⁡ α ) ; 3. tan ⁡ α 2 = s i n α 1 + cos ⁡ α = 1 − cos ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α ; 4. cot ⁡ α 2 = 1 + cos ⁡ α sin ⁡ α = sin ⁡ α 1 − cos ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α . \begin{array}{|c|c|} \hline \\ 1.&\displaystyle \sin^{2}\frac{\alpha}{2} = \frac{1}{2}(1 - \cos\alpha); \\ \\ \hline \\ 2.&\displaystyle \cos^{2}\frac{\alpha}{2} = \frac{1}{2}(1 + \cos\alpha); \\ \\ \hline\\ 3.&\displaystyle \tan\frac{\alpha}{2}= \frac{sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{2} =\pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}; \\\\ \hline\\ 4.&\displaystyle \cot\frac{\alpha}{2} = \frac{1 + \cos\alpha}{\sin\alpha} = \cfrac{\sin\alpha}{1 - \cos\alpha} = \displaystyle\pm\sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}. \\\\ \hline \end{array} 1.2.3.4.sin22α=21(1cosα);cos22α=21(1+cosα);tan2α=1+cosαsinα=21cosα=±1+cosα1cosα ;cot2α=sinα1+cosα=1cosαsinα=±1cosα1+cosα .

3.6 万能公式

1. sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 ; 2. cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 ; 3. tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 . \begin{array}{|c|c|} \hline \\ 1.&\sin\alpha = \displaystyle\frac{2\tan\frac{\alpha}{2}}{1 + \tan^{2}{\frac{\alpha}{2}}}; \\\\ \hline \\ 2.& \cos\alpha = \displaystyle \frac{1 - \tan^{2}\frac{\alpha}{2}}{1 + \tan^{2}\frac{\alpha}{2}}; \\\\ \hline \\ 3.& \tan\alpha =\displaystyle \frac{2\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}}. \\\\ \hline \end{array} 1.2.3.sinα=1+tan22α2tan2α;cosα=1+tan22α1tan22α;tanα=1tan22α2tan2α.

3.7 辅助角公式

a sin ⁡ α   ±   b cos ⁡ α = a 2 + b 2 sin ⁡ ( α   ±   φ ) ,   tan ⁡ φ = b a . a\sin\alpha \ \pm \ b\cos\alpha = \sqrt{a^{2} + b^{2}}\sin(\alpha\ \pm \ \varphi),\ \tan\varphi = \frac{b}{a}. asinα ± bcosα=a2+b2 sin(α ± φ), tanφ=ab.

3.8 正余弦定理

3.8.1 正弦定理

a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R ,   R   是三角形外接圆的半径 . \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,\ R\ \textbf{是三角形外接圆的半径}. sinAa=sinBb=sinCc=2R, R 是三角形外接圆的半径.

3.8.2 余弦定理

1. a 2 = b 2 + c 2 − 2 b c cos ⁡ A ; 2. b 2 = a 2 = c 2 − 2 a c cos ⁡ B ; 3. c 2 = a 2 + b 2 − 2 a b cos ⁡ C . \begin{array}{|c|c|} \hline\\ 1.& a^2 = b^2 + c^2 - 2bc\cos A; \\\\ \hline\\ 2.& b^2 = a^2 = c^2 - 2ac\cos B; \\\\ \hline\\ 3.& c^2 = a^2 + b^ 2 - 2ab\cos C. \\\\ \hline \end{array} 1.2.3.a2=b2+c22bccosA;b2=a2=c22accosB;c2=a2+b22abcosC.

3.9 三角形面积公式

S △ = 1 2 底 × 高 = 1 2 a b sin ⁡ C = 1 2 b c sin ⁡ A = 1 2 sin ⁡ B ⏟ 已知两边及其夹角 = c 2 sin ⁡ A sin ⁡ B 2 sin ⁡ ( A + B ) = b 2 sin ⁡ A sin ⁡ C 2 sin ⁡ ( A + C ) = a 2 sin ⁡ B sin ⁡ C 2 sin ⁡ ( B + C ) ⏟ 已知两角及其夹边 = p ( p − a ) ( p − b ) ( p − c ) ,   p = 1 2 ( a + b + c ) ⏟ 海伦-秦九韶公式 = 1 2 ( a + b + c ) r ,   r 是三角形内接圆的半径 = L 4 R ,   L 是三角形三边长度的乘积 ,   R 是三角形外接圆的半径 = 1 2 ∣ a ⃗ ∣ 2 ∣ b ⃗ ∣ 2 − ( a ⃗ ⋅ b ⃗ ) 2 \begin{array}{ll} S_{\vartriangle} & =\displaystyle \frac{1}{2}底\times 高 \\\\ & = \underbrace{\frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}\sin B}_{\LARGE\textbf{已知两边及其夹角}} \\\\ & =\displaystyle \underbrace{\frac{c^2\sin A \sin B}{2\sin(A+B)} = \frac{b^2\sin A \sin C}{2\sin(A+C)} = \frac{a^2\sin B \sin C}{2\sin(B+C)}}_{\LARGE\textbf{已知两角及其夹边}} \\\\ & = \underbrace{p\sqrt{(p-a)(p-b)(p-c)}, \ \displaystyle p = \frac{1}{2}(a+b+c)}_{\LARGE\textbf{海伦-秦九韶公式}} \\\\ & =\displaystyle \frac{1}{2}(a + b +c)r,\ r\large\textbf{是三角形内接圆的半径} \\\\ & =\displaystyle \frac{L}{4R},\ L\large\textbf{是三角形三边长度的乘积},\ R\large\textbf{是三角形外接圆的半径} \\\\ & = \frac{1}{2}\sqrt{|{\vec{a}}|^{2}|\vec{b}|^2 - (\vec{a} \cdot \vec{b})^{2}}\\ \end{array} S=21×=已知两边及其夹角 21absinC=21bcsinA=21sinB=已知两角及其夹边 2sin(A+B)c2sinAsinB=2sin(A+C)b2sinAsinC=2sin(B+C)a2sinBsinC=海伦-秦九韶公式 p(pa)(pb)(pc) , p=21(a+b+c)=21(a+b+c)r, r是三角形内接圆的半径=4RL, L是三角形三边长度的乘积, R是三角形外接圆的半径=21a 2b 2(a b )2

4 常用的导数公式与基本求导法则

4.1 常数和基本初等函数的导数公式

( 1 ) (   C   ) ′ = 0   ; 常数的导数等于零 . ( 2 ) (   x μ   ) ′ = μ x μ − 1   ; 幂的导数等于次数乘以次数减一次方 . ( 3 ) (   sin ⁡   x   ) ′ = cos ⁡   x   ; 正弦的导数是余弦 . ( 4 ) (   cos ⁡   x   ) ′ = − sin ⁡   x   ; 余弦的导数是负的正弦 . ( 5 ) (   tan ⁡   x   ) ′ = sec ⁡ 2 x   ; 正切的导数等于正割的平方 . ( 6 ) (   cot ⁡   x   ) ′ = − csc ⁡ 2 x   ; 余切的导数等于负的余割的平方 . ( 7 ) (   sec ⁡   x   ) ′ = sec ⁡   x tan ⁡   x   ; 正割的导数等于正割乘以正切 . ( 8 ) (   csc ⁡   x   ) ′ = − csc ⁡   x cot ⁡   x   ; 余割的导数等于负的余割乘以余切 . ( 9 ) (   a x   ) ′ = a x ln ⁡   a ( a > 0 , a ≠ 1 )   ; 指数函数的导数等于指数函数乘以底数的自然对数 . ( 10 ) (   e x   ) ′ = e x   ; ( 11 ) (   log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 )   ; ( 12 ) (   ln ⁡ x   ) ′ = 1 x ,   (   ln ⁡ ∣ x ∣   ) ′ = 1 x   ; ( 13 ) (   arcsin ⁡ x ) ′ = 1 1 − x 2   ; ( 14 ) (   arccos ⁡   x   ) ′ = − 1 1 − x 2   ; ( 15 ) (   arctan ⁡   x   ) ′ = 1 1 + x 2   ; ( 16 ) (   a r c c o t   x   ) ′ = − 1 1 + x 2   ; ( 17 ) (   ln ⁡ ( x + a 2 + x 2 )   ) ′ = 1 a 2 + x 2   ; ( 18 ) (   a 2 + x 2   ) ′ = x a 2 + x 2   , (   a 2 − x 2   ) ′ = x a 2 − x 2   ; ( 19 ) [   ln ⁡ (   sec ⁡ x + tan ⁡ x   )   ] ′ = sec ⁡ x   ,   [   ln ⁡ (   csc ⁡ x − cot ⁡ x )   ] ′ = csc ⁡ x   ; \begin{array}{|c|l|l|} \hline\\ (1) & \large(\ C\ )^{'} = 0\ ; & \large常数的导数等于零. \\\\ \hline\\ (2) & \large( \ x^{\mu}\ )^{'} = \mu x^{\mu - 1}\ ; & \large幂的导数等于次数乘以次数减一次方. \\\\ \hline\\ (3) & \large(\ \sin\ x\ )^{'} = \cos\ x\ ; & \large正弦的导数是余弦. \\\\ \hline\\ (4) & \large(\ \cos\ x\ )^{'} = -\sin\ x\ ; & \large余弦的导数是负的正弦. \\\\ \hline\\ (5) & \large(\ \tan\ x\ )^{'} = \sec^{2}x\ ; & \large正切的导数等于正割的平方. \\\\ \hline\\ (6) & \large(\ \cot\ x\ )^{'} = -\csc^{2}x\ ; & \large余切的导数等于负的余割的平方. \\\\ \hline\\ (7) & \large(\ \sec\ x\ )^{'} = \sec\ x\tan\ x\ ; & \large正割的导数等于正割乘以正切. \\\\ \hline\\ (8) & \large(\ \csc\ x\ )^{'} = -\csc\ x\cot\ x\ ; & \large余割的导数等于负的余割乘以余切. \\\\ \hline\\ (9) & \large(\ a^{x}\ )^{'} = a^{x}\ln\ a\quad (a > 0 , a \neq 1)\ ; & \large指数函数的导数等于指数函数乘以底数的自然对数. \\\\ \hline\\ (10) & \large(\ e^{x}\ )^{'} = e^{x}\ ; & \\\\ \hline\\ (11) & \large(\ \log_{a}x)^{'} = \displaystyle\cfrac{1}{x\ln a} \quad (a > 0, a \neq 1)\ ; & \\\\ \hline\\ (12) & \large(\ \ln x\ )^{'} = \displaystyle\cfrac{1}{x},\ (\ \ln |x| \ )^{'} = \displaystyle\cfrac{1}{x}\ ; & \\\\ \hline\\ (13) & \large(\ \arcsin x)^{'} = \displaystyle\cfrac{1}{\sqrt{1 - x^{2}}}\ ; & \\\\ \hline\\ (14) & \large(\ \arccos\ x\ )^{'} = \displaystyle -\cfrac{1}{\sqrt{1 - x^{2}}}\ ; & \\\\ \hline\\ (15) & \large(\ \arctan\ x\ )^{'} = \displaystyle\cfrac{1}{1 + x^{2}}\ ; & \\\\ \hline\\ (16) & \large(\ \mathrm{arccot}\ x\ )^{'} = \displaystyle -\cfrac{1}{1 + x^{2}}\ ; & \\\\ \hline\\ (17) & \large\left(\ \ln(x + \sqrt{a^{2} + x^{2}})\ \right)^{'} = \displaystyle\cfrac{1}{\sqrt{a^{2} + x^{2}}}\ ; & \\\\ \hline\\ (18) & \large\left(\ \sqrt{a^{2} + x^{2}}\ \right)^{'} = \displaystyle\cfrac{x}{\sqrt{a^{2} + x^{2}}}\ ,\large\left(\ \sqrt{a^{2} - x^{2}}\ \right)^{'} = \displaystyle\cfrac{x}{\sqrt{a^{2} - x^{2}}}\ ; & \\\\ \hline\\ (19) & \large\left[\ \ln(\,\sec x + \tan x\ ) \ \right]^{'} = \sec x\ , \ \left[\ \ln(\,\csc x - \cot x) \ \right]^{'} = \csc x\ ; & \\\\ \hline \end{array} (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)( C )=0 ;( xμ )=μxμ1 ;( sin x )=cos x ;( cos x )=sin x ;( tan x )=sec2x ;( cot x )=csc2x ;( sec x )=sec xtan x ;( csc x )=csc xcot x ;( ax )=axln a(a>0,a=1) ;( ex )=ex ;( logax)=xlna1(a>0,a=1) ;( lnx )=x1, ( lnx )=x1 ;( arcsinx)=1x2 1 ;( arccos x )=1x2 1 ;( arctan x )=1+x21 ;( arccot x )=1+x21 ;( ln(x+a2+x2 ) )=a2+x2 1 ;( a2+x2  )=a2+x2 x ,( a2x2  )=a2x2 x ;[ ln(secx+tanx ) ]=secx , [ ln(cscxcotx) ]=cscx ;常数的导数等于零.幂的导数等于次数乘以次数减一次方.正弦的导数是余弦.余弦的导数是负的正弦.正切的导数等于正割的平方.余切的导数等于负的余割的平方.正割的导数等于正割乘以正切.余割的导数等于负的余割乘以余切.指数函数的导数等于指数函数乘以底数的自然对数.

4.2 函数的和、差、积、商的求导法则

  • u = u ( x ) , v = v ( x ) u = u(x), v = v(x) u=u(x),v=v(x) 都可导,则

( 1 ) (   u   ±   v   ) ′ = u ′ ± v ′   ; ( 2 ) (   C u   ) ′ = C u ′ (   C 是常数  ) ; ( 3 ) (   u v   ) ′ = u ′ v + u v ′   ; ( 3 ) ( u v ) ′ = u ′ v − u v ′ v 2   . \large \begin{array}{clcl} (1) & (\ u \ \pm\ v\ )^{'} = u^{'} \pm v^{'}\ ; & (2) & (\ Cu\ )^{'} = Cu^{'}(\ C\large是常数\ ); \\\\ (3) & (\ uv\ )^{'} = u^{'}v + uv^{'}\ ; & (3) & \displaystyle\left(\cfrac{u}{v}\right)^{'} = \cfrac{u^{'}v - uv^{'}}{v^{2}}\ . \end{array} (1)(3)( u ± v )=u±v ;( uv )=uv+uv ;(2)(3)( Cu )=Cu( C是常数 );(vu)=v2uvuv .

4.3 反函数的求导法则

  • x = f ( y ) x = f(y) x=f(y) 在区间 I y I_{y} Iy 内单调、可导且 f ′ ( y ) ≠ 0 f^{'}(y) \neq 0 f(y)=0 ,则它的反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x) I x = f ( I y ) I_{x} = f(I_{y}) Ix=f(Iy) 内也可导,且

[   f − 1 ( x )   ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y \large\left[\ f^{-1}(x) \ \right]^{'} = \displaystyle\cfrac{1}{f^{'}(y)} \quad或\quad \cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{1}{\cfrac{\mathrm{d}x}{\mathrm{d}y}} [ f1(x) ]=f(y)1dxdy=dydx1

4.4 复合函数的求导法则

  • y = f ( u ) y = f(u) y=f(u),而 u = g ( x ) u = g(x) u=g(x) f ( u ) f(u) f(u) g ( x ) g(x) g(x) 都可导,则复合函数 y = f [   g ( x )   ] y = f\left[\ g(x)\ \right] y=f[ g(x) ] 的导数为

d y d x = d y d u ⋅ d u d x 或 y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) \displaystyle\large\cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{\mathrm{d}y}{\mathrm{d}u} \cdot \cfrac{\mathrm{d}u}{\mathrm{d}x} \quad或\quad y^{'}(x) = f^{'}(u) \cdot g^{'}(x) dxdy=dudydxduy(x)=f(u)g(x)

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

略无慕艳意

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值