2019年11月1日,刚刚当选人工智能学会理事长的中国工程院院士、清华大学自动化系教授戴琼海在北京智源大会“脑科学与AI专题论坛”上发表了题为《脑与认知科学》的主题演讲。
演讲报告以脑与认知科学和人工智能关系为基点,涵盖了脑与认知科学的历史与现在,探索了脑与认知科学落地人工智能的关键问题和技术进展。戴琼海认为,脑与认知科学将为人工智能的演进与发展注入一针强心剂,包括以核磁共振、CT等技术为基础的脑成像技术和神经网络记忆决策控制机制等方面的研究将对人工智能的发展产生重要贡献。
下面是关于戴琼海教授演讲的精彩要点介绍。
01
“计算建模”
认知科学与人工智能的桥梁
戴琼海认为,认知科学是一门对心智过程进行多学科研究的科学,其在人工智能研究中的地位极其重要。《Science》曾经罗列出的125个重要的科学问题,其中涉及脑认知相关的问题即已超过10个,包括“意识的生物学基础是什么”,“记忆是如何存储和获取的”,“通过计算机进行大脑研究的界限是什么”等。
正如大家所了解,人与动物的最大区别就在于人类具有较强认知能力,荷马、伯拉图、亚里士多德和巴普洛夫等都曾试图深入人类认知领域进行挖掘,但局限于历史条件与技术水平,精神活动在当时无法被察觉到,导致研究只能停留在表面,得到的结论无法从深层次揭示心智的奥秘,使得认知研究进展较为缓慢。
这种局限性让研究者们不得不开始反思,并进而探讨新的研究路径。到1950年,一系列认知心理学著作开始出现以及人工智能真正开始兴起,引发了认知研究方向和研究思路的全新变革。研究者们认为,虽然认知过程很难以观测,但能不能通过计算机做出一个计算模式?能否象类脑那样通过精神计算模型对认知过程进行仿真?这其实折射出一个很重要的研究方法:利用计算机建模,然后不断修正模型来提升认知研究的准确性。1973年,隆科·希金斯正式基于上述研究方法,将人工智能与人类学、哲学、心理学、以及语言学在内的众多学科进行了综合,不仅标志着认知科学的正式诞生,也有力地反驳了当时“人工智能寒冬论”的质疑。1977年,伴随着《认知科学》创刊,学术界正式开始以认知科学为主题进行研究,这也使得人工智能在教育学、语言学等多学科交叉的基础上有了较快的发展。
02
“脑成像技术”认知科学
携手人工智能突破的关键
但就目前来说,认知科学在研究方法上,正面临着瓶颈:由于无法观察到认知过程和精神活动,研究者们做了太多关于形成刺激与反馈的假设;同时,戴琼海认为,历届研究者们在计算模拟领域的大量研究尽管推进了历史的演进,然而各个学科都只是“各扫门前雪”,使得脑科学整体的发展较为缓慢。比如,当前认知科学领域的论文作者、论文引用有63%、65.7%都来自于心理学领域,而认知科学毕业博士也近五成来自于心理学领域。这种认知科学被包含在心理学里的情况,在一定程度上有悖于认知科学以及人工智能的发展。
那么认知科学应该怎样发展呢?据戴琼海介绍,从上个世纪末开始,学术界便开始探讨心智研究能否以观测为基础来进行。发展比较好的一个研究方向,便是通过引入核磁共振、CT等技术手段,以大脑为核心进行结构分析,探寻它与认知之间的关系。这也使得脑成像将成为基于认知科学探索人工智能的重要工具。
以下是上述研究相关的几个典型贡献:
1.2001年,Berkeley科学家弗兰克通过对视觉神经输出通道的信号观测,进一步验证了动物视觉系统的稀疏编码的机制。
2.2004年,康奈尔大学神经科学家杰夫·霍金斯通过对大脑新皮质层进行观察,发现了六层结构的微观连接关系,并提出了层级式认知过程理论。
3.2012年,马萨诸塞总医院在《Science》杂志上发表论文,展示了新皮质连接的规律网络结构到电路板阵列类似的认知过程。
戴琼海在演讲中指出,认知科学与人工智能领域若要实现突破,必须在脑成像领域做足功夫,尤其是需要做到微观细胞层面、介观环路层面和宏观全脑层面观测三者兼顾,方可实现认知过程的准确观察。
介观环路是信息在神经环路中的处理方式。如果我们要充分认识认知过程,一定要理清细胞群之间的关系,以及人类说话、做事所形成的神经环路的认知是什么,即物质与精神层面之间的关系。戴琼海认为这个过程与物理研究不同,比如爱因斯坦提出的假说之所以正确是因为物理理论是真实存在的,但认知过程是在不断变化的,想要通过一个公式把它表示出来非常困难。
微观成像主要是研究基因以及基因的编码序列,在这个过程中宏观、介观都非常重要。我们现在划分脑功能区域主要靠核磁共振、CT,但是这并不能深入细胞内部,只能了解相应的功能区。如果要深入观察细胞之间的联动与连接,就需要依靠介观,运用双光子的显微镜可以满足深入观测细胞之间关系的需要。
戴琼海团队当前也开始了相关的研究,并发现了认知科学在脑成像技术方向的一系列瓶颈:一般来讲,在成像时若分辨率足够高时,看到的视野就非常小;当视野非常大时,分辨率就会较低。据戴琼海归纳,脑成像领域的相关研究趋势和脉络,主要有如下四个方面:
小视场、低分辨:典型代表是Hubel,它专注于猫视觉的研究,采用的计算模型和深度学习几乎一致。
小视场、高分辨:1906年,Golgi和Cajal 获得了诺贝尔医学奖,这是脑科学领域的第一个诺贝尔奖。他们通过手工绘画、染色,阐述出了神经元体系。2014年,Betzig, Hell 和Moerner 因在超分辨技术的突出成就也获得了诺贝尔化学奖,这种技术可实现对神经细胞的分类进行了观测;这个领域的佼佼者还有华人科学家庄晓威,在细胞内的基因测序等方面做出了重要贡献。
大视场、低分辨:这个领域产生了8个诺贝尔奖,比如1979年生理医学奖的“X射线断层成像仪”、2003年生理医学奖的“磁共振成像技术”等。
大视场、高分辨:这个领域要求既要看到全脑,又要看到细胞,还需要对细胞中与神经元信息传递息息相关的电变化、化学变化机制进行深入观测研究探讨。戴琼海认为如能解释清楚其中的机制,将是诺贝尔奖级别的成就,一定会对认知科学和人工智能产生极大的贡献。
03
从脑科学走向人工智能的
四个追溯路径
戴琼海接下来介绍了他们团队在认知科学领域的一些研究新动向,包括:他们正通过让小鼠听音乐来试图对神经元的概念进行理解,在这个过程中观测小鼠的脑神经元变化,在数十万次的观测之后可能会发现一些共性的规律。目前,相关的研究成果分别发表在了《Nature photonics》和《Nature Methods》上,其中包含RUSH-I研究总结和百万级神经元单细胞分析工作。
戴琼海团队另外一项重要研究,是关于神经网络的记忆决策控制机制。据戴琼海介绍,人类大脑包含本能脑、情绪脑以及逻辑脑,其中逻辑脑至关重要,它是人之所以成为人的根本原因,所以把握逻辑脑背后的机制对脑科学、人工智能都有十分重要的意义。目前,戴琼海团队在神经网络记忆决策控制领域,主要在追溯如下四个问题:
第一,研究神经环路的作用机理,神经环路是只属于脑活体的产物。
第二,揭示神经血管的耦合机制。目前通过核磁共振进行的研究中,对于血管和神经是否具有耦合作用包含两种假设,一种假设没有关系,另一种假设有关系,这两种假设背后都有较强的研究力量。戴琼海认为,如若能在这个问题上有所突破,对深入脑科学的研究将会具有很大的贡献。
第三,解决脑免疫的问题,大脑中包含神经细胞与胶质细胞,目前学界认为胶质细胞起到了供给能量的作用,胶质细胞越多,个体就会越聪明,但是胶质细胞过多也容易导致胶质细胞瘤。100多年前曾有一位脑神经科学家提出,脑没有淋巴,但随后又有人提出大脑中包含淋巴从而起到保护大脑的作用,如果能够追踪到淋巴细胞在大脑中的工作轨迹,那将是对脑科学研究的极大推动。
第四,实现从脑科学到认知的颠覆性突破——构建一个认知智能模型。戴琼海表示这是他自己最为关注的工作。
戴琼海最后表示,他们在认知科学领域的研究和进展,包括全脑皮层神经网络观测、百万神经元大脑图谱绘制,以及和人工智能的连接——认知智能的理论构建等,最终是希望能落实到教育、医疗等应用领域,能为国家做出一点自己的贡献。
- 往期文章 -
↓ 点击"阅读原文"加入「智源社区」