免费开放!清华、智源、协和联合开发乳腺癌AI诊断工具,可预测分子亚型,准确率高达76%...

清华大学、智源研究院和协和医院合作开发的SonoBreast模型,利用超声影像预测乳腺癌分子亚型,准确率提升至76%,有助于无创、快速的临床决策。该模型通过深度学习技术,尤其是VGG-19网络,处理超声图像,改善数据预处理方法,以实现更精准的预测。未来计划通过联邦学习扩大数据集,并举办机器学习竞赛推动研究进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文:贾伟

使用AI技术来检测乳腺癌,如今已有诸多研究,但大多是基于磁共振、乳腺X线影像进行预测。而超声是中国女性乳腺癌筛查的主要方式。如何利用好超声影像,进行乳腺癌筛查,并对乳腺癌做分子亚型分类,是中国AI医疗领域一个重要且有待拓展的方向。


清华大学、北京智源人工智能研究院以及北京协和医院的研究团队在这一方向进行合作,在2020年 6月份曾发布一项基于VGG模型,对超声影像进行良/恶性检测 及分子亚型分类的深度神经网络模型SonoBreast,当时模型在乳腺癌分子分型上的准确率为56.3%,F1 Score为45.8%。

研究团队经过数月对数据集预处理算法和训练模型的改进,根据近期公布结果,这一模型的分子分型准确率提升了近20个点,达到 76%;而在二分类问题上可以达到93%的准确率。

从临床的角度来看,这些结果距离使用还有很远的距离,但却代表了几个新颖的研究路径:

  • 尝试使用超声图像,由于超声检查具有无创、简便、动态等优点,能让模型更简便、具有普遍适用性;

  • 进行分子亚型检测而非仅仅良/恶检测。分子亚型的检测,使用肉眼往往是无法分辨的,但对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值