人大赵鑫:基于图神经网络,建模知识图谱

报告介绍了如何利用图神经网络(GNN)进行知识图谱的建模与应用,包括知识图谱的表示、知识驱动的解离表示推荐算法和一致性增强的文本生成。GNN在知识图谱表示中,如RGCN,用于编码关系图,将节点信息传播和聚合。在推荐系统中,结合知识图谱进行解离表示学习,提高推荐的可解释性和准确性。此外,还探讨了如何通过知识信息融合增强对话式推荐系统的性能。
摘要由CSDN通过智能技术生成

报告 | 赵   鑫

文 | 熊宇轩

我这里主要给大家介绍一下利用图神经网络能做一些什么事情,这里面主要关注知识图谱的建模与应用。

在本次报告中,我们将从三个方面介绍基于图神经网络的知识建模与应用:

(1)知识图谱简介;

(2)知识信息的利用;

(3)知识信息的融合。

01

知识图谱

最经典知识图谱表示形式为3/N 元组,即<头实体,关系,尾实体>,我们可以将其视为是一个边上有类型标签的图。

下图列举了一些目前常用的知识图谱的规模,例如:wordnet、YAGO、DBpedia、Freebase。

知识图谱示例(arxiv.org/abs/2002.00388)

知识图谱本身是一种离散的图数据,可能并不适合于深度学习/表示学习。为了将知识图谱用于深度学习任务,我们首先需要进行低维的向量化表示。其中 TransE 是一种经典的知识图谱表示方法,即「头实体+关系向量」应该与尾实体的向量尽可能接近。此外,我们可以把知识图谱三元组的关系看成一种语义匹配,即头实体和尾实体在某种关系上的相似度很高。

随着图神经网络的出现,许多研究者试图设计图神经网络对关系图进行编码。由于知识图谱也是一种关系图,因此该领域的工作自然地扩展到了对知识图谱的编码上。

对于无关系图,图神经网络会将某节点的信息传播出去,并聚合各邻居节点的信息,形成新的节点表示。对于有关系图,以 RGCN 为例,相较于普通的 GCN,聚合邻居节点的信息时需要区分不同的关系,每一次传播时的信息都来自与当前节点具有各种不同的关系的邻居节点。此外,我们需要赋予不同消息来源不同的权重矩阵。

02

知识图谱的应用场景

1

知识驱动的解离表示推荐算法

首先,我们可以将知识图谱用于设计推荐算法。

给定用户和物品,用户对物品的购买行为形成了一个二部图,我们可以通过 GNN 对该行为进行建模。

我们没有直接使用原始的GNN,而是使用更适合可解释推荐的解离 GCN(DGCN)(Ma et al., ICML 2019)。在该工作中&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值