导读:基底核是大脑中多巴胺分泌最丰富的核团,在医学上和帕金森症密切相关,而人工智能领域目前最热的强化学习理论也来源自从基底核的工作原理。
作为欧盟脑计划子项目的负责人、欧洲神经信息学领域的领导人物,瑞典皇家理工学院Jeanette Hellgren Kotaleski 教授在「2021北京智源大会」的报告中详细介绍了欧盟脑计划中有关建立一个高精度基底核脑区模型的相关标准和实现路径,展现了如何从分子,细胞和神经回路的尺度上,精巧的还原了大脑运动和感知相结合的工作原理。
成功模拟了鳗鱼在复杂水流的情况下,以无监督学习的方式,实现自感知、自适应、自驱动,同时进行躲避障碍与向目标物体游动的行为。
该工作对于从高精度大脑模型上模拟生物智能并启发类脑的通用人工智能研究具有重要意义。
编者注:Jeanette Hellgren Kotaleski,是瑞典皇家理工(KTH)神经信息学教授和卡洛林斯卡医学院兼聘教授,瑞典国家神经信息学节点的负责人,及欧盟“人类大脑计划”(HBP)子项目的首席负责人。她的研究重点是使用计算模型来理解运动系统中,特别是基底神经节中信息处理和学习的神经机制。研究手段涵盖了不同尺度上的大脑模拟,上至使用精细神经模型或者抽象模型进行的大规模神经网络的模拟,下到亚细胞过程的动力学模型。
撰文:徐琳璐&刘祥 (智源博士后)
审校:杜凯(北京大学)
大规模的神经元网络仿真是了解真实大脑神经活动的重要方法,并可用