中科院冯洋| Prefix-to-Prefix生成:进展、挑战与展望

本文介绍了Prefix-to-Prefix生成在自然语言处理中的应用,对比了它与Sequence-to-sequence生成的区别,并探讨了Prefix-to-Prefix面临的输入信息不完整性、模型生成策略不确定性和鲁棒性问题。解决方案包括获取更多输入信息、提高模型稳定性和增强模型鲁棒性。文章还展望了未来的研究方向,强调了合理读写策略、多模态信息融合和特定语种处理的重要性。
摘要由CSDN通过智能技术生成

【专栏:研究思路】序列到序列生成是目前NLP领域生成任务的主流模型,主要应用于机器翻译、语音识别、序列标注等任务上。然而,这需要源序列是完整的,在同声传译、流式语音识别等现实场景中不能够适用。因此,根据不完整源序列进行生成就被称为Prefix-to-prefix生成。

本文整理了中国科学院计算技术研究所研究员,青源会会员冯洋在《青源Talk第九期|从Sequence-to-sequence生成到Prefix-to-prefix生成》中的主要分享内容,包括以下三个方面:

1.  目前Prefix-to-prefix基本概念,以及和Sequence-to-sequence生成的区别;

2.  当前Prefix-to-prefix生成的研究进展及面临的挑战;

3.  针对这些区别和挑战,目前的解决方案。

讲者介绍:冯洋,中国科学院计算技术研究所研究员、博士生导师、自然语言处理团队负责人,中国人工智能学会首批杰出会员,主要研究方向为自然语言处理、机器翻译和人机对话。担任中文信息学会青年工作委员会副主任,多次担任ACL/EMNLP/COLING等国内外会议高级领域主席/领域主席。机器翻译方面的工作获得ACL  2019最佳长文奖,为ACL开办50多年来国内首次获得该奖项,并获CCF自然语言处理专委会 “青年新锐奖”、“汉王青年创新奖”一等奖等,并作为项目负责人承担国家重点研发计划项目等。

本文整理自青源Talk第九期,视频回看地址:https://event.baai.ac.cn/activities/202

此外,冯洋研究员对青年学生的寄语如下:

讲者:冯  洋

撰文:梁  子

审校:戴一鸣

01

Prefix-to-Prefix:问题与挑战

在介绍Prefix-to-prefix之前,我们需要先了解序列到序列(Sequence-to-sequence)生成。序列到序列生成是目前生成任务的主流模型。给定一个源序列,Sequence-to-sequence会通过encoder来获得其表示,然后基于表示序列化地生成目标序列,它目前的应用有机器翻译、语音识别、序列标注等任务。

e167f275533a48a25e4851cc68cc459b.png

以机器翻译任务为例,这种生成方式的特点是:在进行翻译时,源序列是完整的,即需要基于整个源序列进行翻译。但在现实需求中,我们常常需要在序列流(如语音流)没有结束输入的时候就进行翻译,这时Sequence-to-sequence的生成方式就不再适用。一般而言,实时处理这种不完整的流数据,就被称为Prefix-to-prefix生成。

正如前面所述,Prefix-to-prefix更适合于流式的语音识别、同声传译等实时任务。对于这些任务,如果等到数据流采集完毕再进行处理,就会因为时延而影响用户体验。因此,Prefix-to-prefix的难点在于保证“低延时”,即在只获取了部分数据流时便进行处理。以同声翻译为例,当第一步输入两个词时,prefix的方式就会开始翻译生成第一个词。之后再获得新的两个词作为输入,开始生成第二个目标词,如此循环往复。

在以上过程中,prefix需要根据一个信息不完整的源前缀来生成目标序列,因而比起Sequence-to-sequence的方式,这种处理的难度更高。基于这个区别,Prefix-to-prefix生成中主要有三个挑战,分别是:输入信息的不完整性、模型生成策略的不确定性和生成模型较低的鲁棒性。

以下将以同声传译为例对上述问题进行介绍。

(一)输入信息的不完整性

下图展示了如何将“鲍威尔12日与沙龙举行了会谈”这句话翻译为英语中的序列:“Powell held talks with Sharon on 12th.”。在Seq-to-seq的背景下,“talks”的生成会受到所有输入词汇的影响,因而更容易被确定。但在Prefix-to-prefix中,由于在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值