个人作业:天津地铁项目的理解和设计思路

本文介绍了一个地铁线路信息管理系统的设计与实现,包括地铁线路数据的存储与读取,以及基于这些信息的最短路径计算算法。用户可以通过输入起点和终点,获取到最优的换乘方案和详细的途经站点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目需求

1. 地铁路线信息IO操作

存储地铁线路信息(如subway.txt),保存地铁线路名称、各个地铁站点的名称以及车站换乘信息同时能够使用程序读取地铁线路信息文件

2. 最短路线计算

设计最短路线算法, 输入出发地和目的地, 计算出最短的路径和换乘信息, 并将结果输出

3. 用户查询

用过户可以输入出发地和目的地, 输出路径中的所有站点信息

设计思路

线路的存储和读取

可以按照线路名+站点名的方法存储站点, 逐行读取信息, 线路交叉(即可以转站的点)设置多遍

线路站点
1刘园
1西南角
…. 
2曹庄
2西南角

 

路径的分析

可以逐行读取信息,将出发点和目的地之间的路线连接起来, 并结合转站的点.可以通过经过的站点数来确定最短的路径

转载于:https://www.cnblogs.com/YONGinggg/p/11548556.html

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了HarrisShi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值