基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
有N个任务需要执行,第i个任务计算时占R[i]个空间,而后会释放一部分,最后储存计算结果需要占据O[i]个空间(O[i] < R[i])。
例如:执行需要5个空间,最后储存需要2个空间。给出N个任务执行和存储所需的空间,问执行所有任务最少需要多少空间。
Input
第1行:1个数N,表示任务的数量。(2 <= N <= 100000) 第2 - N + 1行:每行2个数R[i]和O[i],分别为执行所需的空间和存储所需的空间。(1 <= O[i] < R[i] <= 10000)
Output
输出执行所有任务所需要的最少空间。
Input示例
20 14 1 2 1 11 3 20 4 7 5 6 5 20 7 19 8 9 4 20 10 18 11 12 6 13 12 14 9 15 2 16 15 17 15 19 13 20 2 20 1
Output示例
135
思路:这题的方法特别经典,先说说我做题时候想法, 我当时想的是执行时间大的一定要放前面,因为执行时间大的,其余执行时间小的可能在他剩余里面运行,从而不用申请新的, 执行时间小的放前面的话, 前面有许多存储的,这时候大的来,总的占用空间肯定很大。。。结果只对几个测试点。。。
这题正解:转自:光速小丸子
这道题 我几乎是试出来的。。。
后来想了想,说一下自己的理解。
第n个任务有两个参数,一个是执行空间oper,一个是存储时间strore。根据题意可知,oper>=store。
假设只有两个任务,那么就两种结果,先执行a,后执行b。或者先执行b,后执行a。
前者的结果是 max(a.oper,a.store+b.oper)
后者的结果是 max(b.oper,b.store+a.oper)
这个时候可以知道,结果一定是min( a.store+b.oper , b.store+a.oper )
假设a.store + b.oper < b.store + a.oper 。产生这样结果的原因是 先执行a,后执行b的顺序
所以有b.oper - b.store < a.oper - a.store。所以可知,排序的时候要将 store-oper 这个差值大的放前面,让它先执行,这样就能取到最小值。
这中方法很强,应该也比较常用, 对n个变量进行规划从而达到某种目的,可以变成两个变量,假设这两个变量的关系,然后通过关系找必定成立的性质,今年山东省赛金牌题,就是这个思想 -> 传送门
代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
struct node{
int r;
int o;
}f[100000];
int cmp(node a,node b){
return a.r -a.o >b.r -b.o ;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d",&f[i].r,&f[i].o);
}
sort(f,f+n,cmp);
int pos=0;//不断记录存储空间和;
int res=0;//所需的最小空间
for(int i=0;i<n;i++){
if(res<pos+f[i].r){
res=pos+f[i].r ;
}
pos+=f[i].o;
}
printf("%d\n",res);
return 0;
}