这里有一个关于合法的括号序列的问题。
如果插入“+”和“1”到一个括号序列,我们能得到一个正确的数学表达式,我们就认为这个括号序列是合法的。例如,序列"(())()", "()"和"(()(()))"是合法的,但是")(", "(()"和"(()))("是不合法的。我们这有一种仅由“(”,“)”和“?”组成的括号序列,你必须将“?”替换成括号,从而得到一个合法的括号序列。
对于每个“?”,将它替换成“(”和“)”的代价已经给出,在所有可能的变化中,你需要选择最小的代价。
Input
第一行是一个非空的偶数长度的字符串,它仅由“(”,“)”和“?”组成。它的长度不大于 50000。接着是m行,m是字符串中“?”的个数。每一行包含两个整数 ai和bi ( 1<=ai,bi<=1000000), ai是将第i个“?”替换成左括号的代价, bi是将第i个“?”替换成右括号的代价。
Output
在一行中输出合法的括号序列的最小代价。 如果没有答案,输出-1。
Input示例
(??) 1 2 2 8
Output示例
4
/*将?先全部换成右括号,然后遍历,遇到),res++;否则res--.
当截止到遍历的地方为止不能合法化,就将前面r[i]-l[i]最大的?换成(。
*/
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
char s[50005];
int l[50005];//左括号代价
int r[50005];//右括号代价
int main()
{
int flag=1;
priority_queue<int>q;
long long sum=0;
scanf("%s",s);
int len=strlen(s);
for(int i=0;i<len;i++)
{
if(s[i]=='?')
{
scanf("%d%d",&l[i],&r[i]);
sum+=r[i];//记录将?换成)的总代价和
}
}
int res=0;
for(int i=0;i<len;i++)
{
if(s[i]=='(') res++;
else res--;
if(s[i]=='?') q.push(r[i]-l[i]);//优先队列记录优先更换的?
if(res<0)//证明前面没有了(
{
if(q.empty()){
flag=0;
break;
}
else//如果队列中有元素,证明此前有?可以换成(
{
sum-=q.top();//更新代价 sum=sum-r[i]+l[i];
q.pop();
res+=2;//当?时,之前res会--,现在变成了(,res + 1 +1
}
}
}
if(res) flag=0;
if(flag)
printf("%lld\n",sum);
else printf("-1\n");
}