Chinese remainder theorem again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3381 Accepted Submission(s): 1459
Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
典型的例题,模板:
#include<stdio.h>
using namespace std;
#define ll long long
ll n,a;
ll m[15],b[15];//m[]模数,b[]余数
ll e_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int ans=e_gcd(b,a%b,x,y);
ll temp=x;
x=y;
y=temp-a/b*y;
return ans;
}
ll lmes() {
ll M = m[0], R = b[0], x, y;
for (int i = 1; i < n; i++) {
int gcd=e_gcd(M, m[i], x, y);
if ((b[i] - R) % gcd) return 0;
x = (b[i] - R) / gcd*x % (m[i] / gcd);
R += x*M;
M = M / gcd*m[i];
R=(R%M+M)%M;
}
return R;
}
int main()
{
while(~scanf("%d%d",&n,&a))
{
if(n==0&&a==0) break;
for(int i=0;i<n;i++)
{
scanf("%lld",&m[i]);
b[i]=m[i]-a;//保存每个余数
}
ll sum=lmes();
printf("%lld\n",sum);
}
return 0;
}