反恐训练营
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6166 Accepted Submission(s): 1579
Problem Description
当今国际反恐形势很严峻,特别是美国“9.11事件”以后,国际恐怖势力更是有恃无恐,制造了多起骇人听闻的恐怖事件。基于此,各国都十分担心恐怖势力会对本国社会造成的不稳定,于是纷纷在本国的军队、警察队伍中开展了反恐训练。作为反恐立场坚定的大国,中国也十分重视在人民解放军、武装警察部队、人民警察队伍中反恐训练,还专门成立了反恐特警队。
炜炜是反恐特警队的一名新队员,现在正在接受培训。这几天刚好是射击训练第二阶段——实弹应变训练的日子,此前的第一阶段里,炜炜经过努力,已经将自己训练成为一个百发百中的神抢手了!这次,他将背着国产最新型12.7mm重型狙击枪进行训练比赛。
这次训练比赛的规则是这样的:
1、每个队员从出发点开始,沿着一条唯一的笔直道路跑直到终点,途中不允许往回跑,否则将被取消比赛资格。
2、出发前,每个队员的枪膛内都被装了顺序一样的、用小写英文字母标明类型的子弹序列,每位队员被告知这一序列的信息;同时,每位队员也被告知恐怖分子即将出现的序列和类型(同样用小写英文字母标明类型)。
3、在跑动的过程中,若发现“恐怖分子”,特警队员可以选择用枪击毙他,来得到写在“恐怖分子”胸前的得分,但是前提是他使用的子弹类型必须和“恐怖分子”类型相同,否则,即使击毙了“恐怖分子”,也得不到分数;当然选择不击毙他也是可以的,这样他不会从那个“恐怖分子”身上得到分数。
4、允许特警队员放空枪,这样可以消耗掉型号不对的子弹而不至于杀死“恐怖分子”(当然每个特警队员都不会愚蠢到不装消音装置就放空枪,以至于吓跑“恐怖分子”),等待枪口出现正确型号的子弹击毙他得分。
这里,我们假定:
1、对于每个队员,途中出现恐怖分子的地点、时间、类型也是完全一样的。
2、每颗子弹都是质量合格的,都可以发挥杀伤效力
3、由于队员各个都是神枪手,一旦他选择了正确的子弹,向目标射击,目标100%被爆头
4、每个队员的记忆力超强,能记住所有子弹序列信息和恐怖分子序列信息。
5、每个队员体力足够好,能跑完全程,并做他想要做的
6、“恐怖分子”是不动的,小范围内不存在多于一个的恐怖分子;
炜炜需要你的帮助,告诉他如何做,才能得到最高的分数。现在如果告诉你出发时枪膛内子弹的序号和型号、恐怖分子出现的序号和类型,你能告诉炜炜他最多能得到多少分数吗?
Input
输入数据的第一行有一个整数N表示子弹和恐怖分子的类型数。随后的一行是各种恐怖分子类型的一行字母,两个字母之间没有任何字符。接下来的一行是击毙上一行对应位置恐怖分子类型的得分数,每个分数之间恰有一个空格。第三第四行分别表示开始时枪膛内子弹的序列(左边的先打出)和恐怖分子出现的序列(左边的先出现),字母之间都没有任何字符。
每个测试数据之间没有空格和空行。你的程序必须通过全部测试数据,才能被判为AC。
Output
对于每一个测试数据,输出炜炜最多能得到的分数。
Sample Input
3
abc
1 1 1
abc
ccc
3
abc
1 1 1
ccc
aba
Sample Output
1
0
思路:题目那么长,就是最长公共子系列,只不过每个字母有权值了。所以不再是+1,而是加该字母的权值。
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
int dp[2005][2005];
char a[2005];
char b[2005];
map<char,int>m;
struct node{
char str[2005];
int num[2005];
}mat;
int main()
{
int n;
while(~scanf("%d",&n)) {
scanf("%s",mat.str);
for(int i=0;i<n;i++) {
scanf("%d",&mat.num[i]);
}
for(int i=0;i<n;i++) {
m[mat.str[i]]=mat.num[i];
}
scanf("%s%s",a,b);
int len1 = strlen(a);
int len2 = strlen(b);
memset(dp,0,sizeof(dp));
for(int i = 1; i <= len1; i++) {
for(int j = 1; j <= len2; j++) {
if(a[i-1] == b[j-1])//匹配
dp[i][j] = dp[i-1][j-1] + m[a[i-1]];
else
dp[i][j] =max(dp[i-1][j],dp[i][j-1]);
}
}
printf("%d\n",dp[len1][len2]);
}
return 0;
}