基于随机森林算法的空气质量预测

源数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import mean_squared_error
from sklearn.tree import DecisionTreeRegressor
# 读取csv文件
data = pd.read_csv('DataSet.csv')

# 转化数据格式 因为co只有1.x 精确到一位会使精度丢失
data['CO'] = data.iloc[:,2:3].round(1)
# data = data.iloc[:,2:].round(0)
data['AQI'] = data['AQI'].round(0)
data.iloc[:,3:] = data.iloc[:,3:].round(0)
x_train,x_validation,y_train,y_validation = train_test_split(data.iloc[:,2:].round(0),data.iloc[:,1].round(0),test_size=0.2)
# 拆的是训练集和验证集 测试集不参与
# test_size 指验证集所占数据的百分比

# 先拆分在进行标准化 
# 先标准化在进行拆分 x 因为标准化会带着验证集的数据一起 不准确
from sklearn.preprocessing import StandardScaler
# 标准化 生成规则
stdScale = StandardScaler().fit(x_train)
# 将规则用于训练集
x_train = stdScale.transform(x_train)
# 将规则用于验证集:(验证集-训练集均值)/ 训练集方法
x_validation = stdScale.transform(x_validation)

# 建立模型CART
dtc = DecisionTreeClassifier(criterion = 'gini',
                             random_state = 0,
#                              若节点要拆,最少样本要有6个
                             min_samples_split = 6,
#                              叶子节点包含的样本数
                             min_samples_leaf = 3,
                             max_features = None)
# 训练模型
dtc.fit(x_train,y_train)
# 测试结果
result_y = dtc.predict(x_validation)

# 建立模型
dtc = DecisionTreeClassifier()
# 训练模型
dtc.fit(x_train,y_train)
# 测试结果
result_y = dtc.predict(x_validation)

y_validation.index.tolist()

accuracy_score(result_y,y_validation)
confusion_matrix(result_y,y_validation)

rfc = RandomForestClassifier(n_estimators = 100,
                             random_state=0,
                             min_samples_split=6,
                             min_samples_leaf=2,
                             max_features=None,
                             oob_score = True)

# 训练模型
rfc.fit(x_train,y_train)
# 测试结果
result_y1 = rfc.predict(x_validation)

accuracy_score(result_y1,y_validation)
rfc.oob_score_
# 随即森林回归模型
regressor = DecisionTreeRegressor(random_state=0,
                                  min_samples_split=6,
                                  min_samples_leaf=2,
                                  max_features=None)
regressor.fit(x_train,y_train)
result_y2 = regressor.predict(x_validation).round(2)

result_y2 = pd.Series(result_y2.tolist())
print(mean_squared_error(result_y2,y_validation))
from sklearn.metrics import r2_score
# 随即森林分类R21
R21 = r2_score(result_y1,y_validation)
# 随即森林回归R22
R22= r2_score(result_y2,y_validation)
R22

# 随即森林回归算法 画图
plt.scatter(result_y2.index.tolist(),y_validation,color = 'g',label='实际值',s=10)
plt.scatter(result_y2.index.tolist(),result_y2,color='y',label='预测值',s=10)
plt.xlabel('样本点')
plt.ylabel('AQI')
plt.legend();
plt.show()

 

基于随机森林空气质量预测是一种使用随机森林算法预测空气质量的方法。随机森林是一种集成学习算法,它由多个决策树组成,每个决策树都是独立训练的。在预测过程中,每个决策树都会给出一个预测结果,最后通过投票或平均的方式得到最终的预测结果。 在Matlab中,可以使用随机森林算法来进行空气质量预测。首先,需要准备好训练数据和测试数据。然后,使用随机森林回归模型来训练模型,并使用训练好的模型对测试数据进行预测。最后,可以使用评估指标如均方误差(mean squared error)和决定系数(R2 score)来评估模型的性能。 下面是一个基于随机森林空气质量预测的Matlab完整程序的示例: ```matlab % 导入数据 data = readtable('air_quality_data.csv'); % 划分训练集和测试集 trainData = data(1:800, :); testData = data(801:end, :); % 提取特征和标签 xTrain = trainData(:, 1:end-1); yTrain = trainData(:, end); xTest = testData(:, 1:end-1); yTest = testData(:, end); % 训练随机森林回归模型 model = TreeBagger(50, xTrain, yTrain, 'Method', 'regression'); % 预测测试集 yPred = predict(model, xTest); % 计算均方误差 mse = mean((yPred - yTest).^2); % 计算决定系数 r2 = 1 - sum((yPred - yTest).^2) / sum((yTest - mean(yTest)).^2); % 输出结果 disp(['均方误差:', num2str(mse)]); disp(['决定系数:', num2str(r2)]); ``` 这个程序中,首先导入数据,然后将数据划分为训练集和测试集。接下来,提取特征和标签,并使用TreeBagger函数训练随机森林回归模型。然后,使用训练好的模型对测试集进行预测,并计算均方误差和决定系数来评估模型的性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值