题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入格式
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入
5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
输出
14
16
说明/提示
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
#include<bits/stdc++.h>
#define ll long long
#define MAXN 500010
#define N 201
#define INF 0x3f3f3f3f
#define gtc() getchar()
using namespace std;
template <class T>
inline void read(T &s){
s = 0; T w = 1, ch = gtc();
while(!isdigit(ch)){if(ch == '-') w = -1; ch = gtc();}
while(isdigit(ch)){s = s * 10 + ch - '0'; ch = gtc();}
s *= w;
}
template <class T>
inline void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x/10);
putchar(x % 10 + '0');
}
int n, m, t[MAXN];
inline int lowbit(int x){
return x & (-x);
}
inline void add(int x, int k){
while(x <= n){
t[x] += k; x += lowbit(x);
}
}
inline int sum(int x){
int ans = 0;
while(x != 0){
ans += t[x];
x -= lowbit(x);
}
return ans;
}
int main()
{
read(n), read(m);
for(int i = 1; i <= n; ++i){
int a;
read(a);
add(i, a);
}
for(int i = 1; i <= m; ++i){
int a, b, c;
read(a), read(b), read(c);
if(a == 1){
add(b, c);
}
else {
printf("%d\n", sum(c) - sum(b-1));
// write(sum(c) - sum(b-1)); puts("");
}
}
return 0;
}