Matlab 数学建模方法(八):评价型模型

一、学习目标

(1)了解评价型模型及其使用场合

(2)掌握线性加权法计算权重

(3)掌握层次分析法计算权重

 二、评价型模型介绍

构成评价模型的五个要素分别为:被评价对象、评价指标、权重系数、综合评价模型和评价者。当各被评价对象和评价指标值都确定以后,问题的综合评价结果就完全依赖于权重系数的取值了,即权重系数确定的合理与否,直接关系到综合评价结果的可信度,甚至影响到最后决策的正确性。而 MATLAB 在评价型模型建模过程中的主要作用是指标筛选、数据预处理(如数据标准化、归一化等)和权重的计算, 最重要的还是权重的计算。

在权重的计算方面, 主要有两种方法: 一种是线性加权法; 二是层次分析法。下面将介绍这两种方法的 MATLAB 实现过程。

三、实例演练 

1. 线性加权法

线性加权法的适用条件是各评价指标之间相互独立, 这样就可以利用多元线性回归方法来得到各指标对应的系数。

现以具体的实例来介绍如何用 MATLAB 来实现具体的计算过程。所评价的对象是股票, 已知一些股票的各个指标以及这些股票的历史表现,其中最后一列标记为 1 的表示为上涨股票,标为 0 的表现为一般的股票,-1 的则为下跌的股票。希望根据这些已知的数据, 建立股票的评价模型,这样就可以利用模型评价新的股票。z

具体步骤如下:

(1)导入数据

clc, clear all, close all
s = dataset('xlsfile', 'SampleA1.xlsx');

(2)多元线性回归

当导入数据后,就可以先建立一个多元线性回归模型,具体实现过程和结果如下:

myFit=LinearModel.fit(s);
disp(myFit)
sx=s(:,1:10);
sy=s(:,11);
n=1:size(s,1);
sy1=predict(myFit,sx);
figure
plot(n,sy,'ob',n,sy1,'*r')
xlabel('样本编号','fontsize',12);
ylabel('综合得分','fontsize',12)
title('多元线性回归模型','fontsize',12);
set(gca,'linewidth',2)

 该段程序执行后,得到的模型及模型中的参数如下。

利用该模型对原始数据进行预测,得到的股票综合得分如图1所示。从图中可以看出,尽管这些数据存在一定的偏差,但三个簇的分层非常明显,说明模型在刻画历史数据方面具有较高的准确度。 

以上是线性加权法构建评价型模型的方法, 所用的程序框架对绝大多数的这类问题都可以直接应用,核心是要构建评价的指标体系, 这是建模的基本功。总的来说,线性加权法的特点是:

(1)该方法能使得各评价指标间作用得到线性补偿,保证综合评价指标的公平性;

(2)该方法中权重系数的对评价结果的影响明显,即权重较大指标值对综合指标作用较大;

(3)该方法计算简便,可操作性强,便于推广使用。

2. 层次分析法 (AHP)

2.1  AHP的本质是根据人们对事物的认知特性,将感性认识进行定量化的过程。

层次分析法 (Analytic Hierarchy Process, AHP) 是美国运筹学家萨蒂(T. L. Saaty)等人 20 世纪 70 年代初提出的一种决策方法,它是将半定性、半定量问题转化为定量问题的有效途径,它将各种因素层次化,并逐层比较多种关联因素,为分析和预测事物的发展提供可比较的定量依据,它特别适用于那些难于完全用定量进行分析的复杂问题。因此在资源分配、选优排序、政策分析、冲突求解以及决策预报等领域得到广泛的应用。

人们在分析多个因素时,大脑很难同时梳理那么多的信息,而层次分析法的优势就是通过对因素归纳、分层,并逐层分析和量化事物,以达到对复杂事物的更准确认识,从而帮助决策。

2.2 层次分析法的应用场景 

(1) 评价、评判类的题目。这类题目都可以直接用层次分析法来评价,例如奥运会的评价、彩票方案的评价、导师和学生的相互选择、建模论文的评价、城市空气质量分析等。

(2) 资源分配和决策类的题目。这类题目可以转化为评价类的题目,然后按照 AHP 进行求解,例如将一笔资金进行投资,有几个备选项目,那么如何进行投资分配最合理呢?这类题目中还有一个典型的应用,就是方案的选择问题,比如旅游景点的选择、电脑的挑选、学校的选择、专业的选择等等,这类应用可以说是 AHP 法最经典的应用场景了。

(3) 一些优化问题,尤其是多目标优化问题。对于通常的优化问题,目前已有成熟的方法求解。然而,这些优化问题一旦具有如下特性之一,如:问题中存在一些难以度量的因素;②问题的结构在很大程度上依赖于决策者的经验;③问题的某些变量之间存在相关性;④需要加入决策者的经验、偏好等因素,这时就很难单纯依靠一个优化的数学模型来求解。这类问题,通常的做法是借助 AHP 法将复杂的问题转化为典型的、便于求解的优化问题,比如多目标规划,借助层次分析法,确定各个目标的权重,从而将多目标规划问题转化为可以求解的单目标规划问题。

2.3 层次分析法Matlab实现

层次分析法中,需要 MATLAB 的地方主要就是将评判矩阵,转化为因素的权重矩阵。为此,这里只介绍如何用 MATLAB 来实现这一转化。

将评判矩阵转化为权重矩阵,通常的做法就是求解矩阵最大特征根和对应阵向量。如果不用软件来求解,可以采用一些简单的近似方法来求解,比如“和法”、“根法”、“幂法”,但这些简单的方法依然很繁琐。所以建模竞赛中依然建议还是采用软件来实现。如果用 MATLAB 来求解,我们就不用担心具体的计算过程,因为 MATLAB 可以很方便、准确地求解出矩阵的特征值和特征根。但需要注意的是,在将评判矩阵转化为权重向量的过程中,一般需要先判断评判矩阵的一致性,因为通过一致性检验的矩阵,得到的权重才更可靠。

下面就以一个实例来说明如何应用 MATLAB 来求解权重矩阵,具体程序如下:

%% AHP法权重计算MATLAB程序
%% 数据读入
clc
clear all
A=[1 2 6;1/2 1 4;1/6 1/4 1];
%%一致性检验和权向量计算
[n,n]=size(A)
[v,d]=eig(A)
r=d(1,1);
Cl=(r-n)/(n-1);
Rl=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 1.59];
CR=Cl/Rl(n);
if CR<0.10
CR_Result='通过';
else
CR_Result='不通过';
end
%%权向量计算
w=v(:,1)/sum(v(:,1));
w=w'
%%结果输出
disp('该判断矩阵权向量计算报告:');
disp(['一致性指标:' num2str(Cl)]);
disp(['一致性比例:' num2str(CR)]);
disp(['一致性检验结果:' CR_Result]);
disp(['特征值:' num2str(r)]);
disp(['权向量:' num2str(w)]);

 运行该程序,可得到以下结果:

应用这段程序时,只要将评判矩阵输入到程序中,其它地方都不需要修改,然后就可以直接、准确地计算出对应的结果,所以这段程序在实际使用中非常灵活。 

MATLAB模式识别实现指标分类评估预测如环境业绩等-Use_For_Predict.m 最近看到很多会员需要使用MATLAB神经网络做如下的事情: 1:MATLAB神经网络对水的质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对空气质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对土壤质量的分类、评估、预测 (属于环境类分类、评估预测) 3:MATLAB神经网络对学员的个人表现进行分类、评估、预测 (属于个人业绩鉴定) 4:MATLAB神经网络对医学、生物学上的细胞、疾病等分类、评估等(属于医学、生物学) 5:MATLAB神经网络对交通、物流等效率方面的分类、评估、预测等(属于交通、物流管理) 6:MATLAB神经网络用于故障诊断 7:概括来讲,就是使用神经网络对某些指标(如空气质量、水质量、个人业绩等)进行“有限”的分类、预测、评价等。 在这里,我特别强调“有限”两个字,因为这正是模式识别工具箱可以解决的问题。我看到很多会员使用不同的神经网络(如模糊识别,RBF, SVM等)。根据我多年的使用经验,其实基于多层BP网络的模式识别是最容易实现、效果非常满意、且结果非常具有说服力。很多会员没有掌握模式识别的精髓,或者网络训练好以后不知道如何评估、使用等。现在我用一个完整的例子来给大家展示一下它的优点。 不知道什么是模式识别,什么是BP网络的会员,请先看一下这个视频:MATLAB模式识别工具箱视频教学 用MATLAB模式识别工具箱(函数)来对某些指标(如空气质量、水质量、个人业绩等)进行分类、评估、预测,分为三步: 数据准备训练和评估预测 下面我来一步一步讲解,先谈数据的准备: 确保输入数据(包括训练以及将来要预测的数据)在比较接近的范围里(归一化是其中一种方式)。 这一个步骤不仅仅是在模式识别里,其实在任何一种网络里,这一步都是必须的。比如说你有400组数据,每组数据对应一个中国县城的空气质量。假设每组数据含有6个指标(称之为A,B,C,D,E,F,G), 如果数据A的范围是10^5-10^7, F的范围是0.1-0.5, 如果用这些数据来训练,很容易导致网络的权重也有同样的数量级的差别,结果是你的网络会非常的“敏感”(可以想象一下,如果F对应的权重是10^10,那么即使F稍微变化一下,都有可能导致网络的输出结果不同。而有时候这样的敏感度并不是你想要的,你可以对数据进行归一化处理,把数据都转换到0-1的区间内。 MATLAB模式识别工具箱可以自动对输入数据进行归一化处理,所以你只要明白这个过程,但是并不需要你额外写程序来处理这些数据。对输出数据进行二进制量化 通常情况下,用于测试的输入数据所对应的输出数据不是量化数据,比如说:优、良,或者是一级、二级等等。那么通常我们用二进制来表达,两位数字的二进制可以表示3类(01,10,11),三位数字的二进制可以表示7类(001,010,011,100,101,110,111,通常我们不使用000)。二进制的顺序不重要,比如说优可以对应001,也可以用010来表示。 经过简单处理,输入数据和新添加的二进制输入数据如下图所示: 神经网络——输入数据模式识别.png MATLAB模式识别实现指标分类、评估、预测 原始训练数据下载: training_data.xls MATLAB模式识别实现指标分类、评估、预测 把数据导入到MATLAB程序里close all clear all clc x=xlsread; y=xlsread; inputs = x'; targets = y';复制代码 我们再谈谈网络的训练和评估: 你可以使用MATLAB自带的模式识别工具箱界面来导入数据、调整参数等,然后得到结果。我通常第一次这样使用,得到一个基础架构以后,然后生成m代码,再在代码上修改。这里我演示给大家,如果通过程序来实现。下面是用来做模式识别的代码(工具箱产生的函数): % 创建一个模式识别网络(两层BP网络),同时给出中间层神经元的个数,这里使用20 hiddenLayerSize = 20; net = patternnet; % 对数据进行预处理,这里使用了归一化函数(一般不用修改) % For a list of all processing functions type: help nnprocess net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; net.o
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值