一.模糊综合评价法
适用范围
模糊综合评价法能够有效解决评价指标模糊、难以量化的问题。这种方法通过模糊数学的隶属度理论,将定性评价转化为定量评价,从而对受多因素影响的事物或对象作出总体评价。
解题步骤
- 确定因素集
- 确定评语集
- 确定各因素权重
- 构造模糊综合评判矩阵
- 进行模糊运算,做出决策
例题
某露天煤矿有五个设计方案,其各项参数如下
项目 | 方案1 | 方案2 | 方案3 | 方案4 | 方案5 |
---|---|---|---|---|---|
可采矿量 | 4700 | 6700 | 5900 | 8800 | 7600 |
基建投资 | 5000 | 5500 | 5300 | 6800 | 6000 |
采矿成本 | 4.0 | 6.1 | 5.5 | 7.0 | 6.8 |
不稳定费用 | 30 | 50 | 40 | 200 | 160 |
净现值 | 1500 | 700 | 1000 | 50 | 100 |
注:最大采矿量为8800吨,最大投资为8000万元
- 步骤1:确定因素集【可采矿量, 基建投资,采矿成本,不稳定费用,净现值】
- 步骤2:确定评语集【方案1,方案2,方案3,方案4,方案5】
- 步骤3:确定权重A=[0.25,0.20,0.20,0.10,0.25]
- 步骤4:构造模糊综合判断矩阵
μ A ( x ) = x 8800 μ B ( x ) = 1 − x 8000 μ c ( x ) = { 1 , 0 ≤ x ≤ a 1 a 2 − x a 2 − a 1 , a 1 ≤ x ≤ a 2 0 , a 2 < x μ D ( x ) = 1 − x 200 μ E ( x ) = x − 50 1500 − 50 = x − 50 1450 \mu_{_A}\left(x\right)=\frac{x}{8800} \\ \mu_{_B}(x)=1-\frac{x}{8000} \\ \mu_c\left(x\right)=\begin{cases}1,&0\leq x\leq a_1\\[2ex]\frac{a_2-x}{a_2-a_1},&a_1\leq x\leq a_2\\[2ex]0,&a_2<x\end{cases} \\ \mu_{_D}(x)=1-\frac{x}{200} \\ \mu_E\left(x\right)=\frac{x-50}{1500-50}=\frac{x-50}{1450} μA(x)=8800xμB(x)=1−8000xμc(x)=⎩
⎨
⎧1,a2−a1a2−x,0,0≤x≤a1a1≤x≤a2a2<xμD(x)=1−200xμE(x)=1500−50x−50=1450x−50
利用上述五个公式,分别对五个因素的数据进行处理得到模糊判断矩阵
R = [ 0.5341 0.7614 0.6705 1.0000 0.8636 0.3750 0.3125 0.3375 0.1500 0.2500 1.0000 0.7600 1.0000 0.4000 0.4800 1.0000 0.4480 0.6552 0.0000 0.0345 ] R=\begin{bmatrix}0.5341&0.7614&0.6705&1.0000&0.8636\\0.3750&0.3125&0.3375&0.1500&0.2500\\1.0000&0.7600&1.0000&0.4000&0.4800\\1.0000&0.4480&0.6552&0.0000&0.0345\end{bmatrix} R=
0.53410.37501.00001.00000.76140.31250.76000.44800.67050.33751.00000.65521.00000.15000.40000.00000.86360.25000.48000.0345
- *步骤5:进行模糊运算,作出决策
B = A ⋅ R = ( 0.7435 , 0.5919 , 0.6789 , 0.3600 , 0.3905 ) B=A\cdot R=(0.7435,0.5919,0.6789,0.3600,0.3905) B=A⋅R=(0.7435,0.5919,0.6789,0.3600,0.3905)
注:模糊算子有很多种,我们这里仅仅使用矩阵乘来算得结果。因此我们最终选择方案1。
代码部分
等常用模型学完再补充…
二.TOPSIS法
适用范围
TOPSIS法适合解决多目标决策问题,尤其是那些需要对有限个评价对象进行优劣排序的问题。
解题步骤
-
原始矩阵正向化
-
正向矩阵标准化
-
计算得分并归一化
例题
帮助KUN哥选择对象,从A,B,C中。各项指标如下
候选人 | 颜值 | 脾气(争吵次数) | 身高165 | 体重90-100 |
---|---|---|---|---|
A | 9 | 10 | 175 | 120 |
B | 8 | 7 | 164 | 80 |
C | 6 | 3 | 157 | 90 |
步骤一:矩阵正向化(得到下列矩阵)
矩阵正向化均使用下列规则
候选人 | 颜值 | 脾气(争吵次数) | 身高165 | 体重90-100 |
---|---|---|---|---|
A | 9 | 0 | 0 | 0 |
B | 8 | 3 | 0.9 | 0.5 |
C | 6 | 7 | 0.2 | 1 |
步骤二:矩阵标准化(得到下列矩阵)
候选人 | 颜值 | 脾气(争吵次数) | 身高165 | 体重90-100 |
---|---|---|---|---|
A | 0.669 | 0 | 0 | 0 |
B | 0.595 | 0.394 | 0.976 | 0.447 |
C | 0.446 | 0.919 | 0.217 | 0.894 |
步骤三:计算得分并归一化
结果【0.122,0.624,0.622】,Kun最终选择了B
代码
等学完再补充吧
三.层次分析法
适用范围
尤其适合于人的定性判断起重要作用的、对决策结果难于直接准确计量的场合。
解题步骤
- 构建目标层,准则层,方案层
- 将各种方案在各准则的得分进行归一化处理
- 构建判断矩阵
- 一致性检验
- 利用特征值法求权重
- 求出最终得分
例题
微博想要在A,B,C三个明星中选择一个为自己的app代言,数据如下。
候选人 | 粉丝数 | 颜值 | 作品质量 | 作品数量 |
---|---|---|---|---|
A | 6000W | 10 | 6.5 | 25 |
B | 3400W | 6 | 8.1 | 46 |
C | 5500W | 8 | 7.5 | 31 |
步骤一:构建目标层,准则层,方案层
步骤二:将各种方案在各准则的得分进行归一化处理
将每个准则的得分除以该准则得分总和即可归一化
步骤三:构建判断矩阵
步骤四:一致性检验
利用最大特征值计算一致性指标CI,再通过查表得到平均随机一致性指标RI,最后计算二者比值,小于0.1则认为一致性检验通过。
C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n−1λmax−n
C R = C I R I { 0 , 判断矩阵为一致矩阵 < 0.1 , 判断矩阵一致 ≥ 0.1 , 判断矩阵不一致 CR=\frac{CI}{RI}\quad\begin{cases}&0,&\text{判断矩阵为一致矩阵}\\&<0.1,&\text{判断矩阵一致}\\&\geq0.1,&\text{判断矩阵不一致}\end{cases}