【数学建模】常考评价类模型

一.模糊综合评价法

适用范围

模糊综合评价法能够有效解决评价指标模糊、难以量化的问题。这种方法通过模糊数学的隶属度理论,将定性评价转化为定量评价,从而对受多因素影响的事物或对象作出总体评价。

解题步骤

  1. 确定因素集
  2. 确定评语集
  3. 确定各因素权重
  4. 构造模糊综合评判矩阵
  5. 进行模糊运算,做出决策

例题

某露天煤矿有五个设计方案,其各项参数如下

项目 方案1 方案2 方案3 方案4 方案5
可采矿量 4700 6700 5900 8800 7600
基建投资 5000 5500 5300 6800 6000
采矿成本 4.0 6.1 5.5 7.0 6.8
不稳定费用 30 50 40 200 160
净现值 1500 700 1000 50 100

注:最大采矿量为8800吨,最大投资为8000万元

  1. 步骤1:确定因素集【可采矿量, 基建投资,采矿成本,不稳定费用,净现值】
  2. 步骤2:确定评语集【方案1,方案2,方案3,方案4,方案5】
  3. 步骤3:确定权重A=[0.25,0.20,0.20,0.10,0.25]
  4. 步骤4:构造模糊综合判断矩阵

μ A ( x ) = x 8800 μ B ( x ) = 1 − x 8000 μ c ( x ) = { 1 , 0 ≤ x ≤ a 1 a 2 − x a 2 − a 1 , a 1 ≤ x ≤ a 2 0 , a 2 < x μ D ( x ) = 1 − x 200 μ E ( x ) = x − 50 1500 − 50 = x − 50 1450 \mu_{_A}\left(x\right)=\frac{x}{8800} \\ \mu_{_B}(x)=1-\frac{x}{8000} \\ \mu_c\left(x\right)=\begin{cases}1,&0\leq x\leq a_1\\[2ex]\frac{a_2-x}{a_2-a_1},&a_1\leq x\leq a_2\\[2ex]0,&a_2<x\end{cases} \\ \mu_{_D}(x)=1-\frac{x}{200} \\ \mu_E\left(x\right)=\frac{x-50}{1500-50}=\frac{x-50}{1450} μA(x)=8800xμB(x)=18000xμc(x)= 1,a2a1a2x,0,0xa1a1xa2a2<xμD(x)=1200xμE(x)=150050x50=1450x50
利用上述五个公式,分别对五个因素的数据进行处理得到模糊判断矩阵
R = [ 0.5341 0.7614 0.6705 1.0000 0.8636 0.3750 0.3125 0.3375 0.1500 0.2500 1.0000 0.7600 1.0000 0.4000 0.4800 1.0000 0.4480 0.6552 0.0000 0.0345 ] R=\begin{bmatrix}0.5341&0.7614&0.6705&1.0000&0.8636\\0.3750&0.3125&0.3375&0.1500&0.2500\\1.0000&0.7600&1.0000&0.4000&0.4800\\1.0000&0.4480&0.6552&0.0000&0.0345\end{bmatrix} R= 0.53410.37501.00001.00000.76140.31250.76000.44800.67050.33751.00000.65521.00000.15000.40000.00000.86360.25000.48000.0345

  1. *步骤5:进行模糊运算,作出决策

B = A ⋅ R = ( 0.7435 , 0.5919 , 0.6789 , 0.3600 , 0.3905 ) B=A\cdot R=(0.7435,0.5919,0.6789,0.3600,0.3905) B=AR=(0.7435,0.5919,0.6789,0.3600,0.3905)

注:模糊算子有很多种,我们这里仅仅使用矩阵乘来算得结果。因此我们最终选择方案1。

代码部分

等常用模型学完再补充…

二.TOPSIS法

适用范围

TOPSIS法适合解决多目标决策问题,尤其是那些需要对有限个评价对象进行优劣排序的问题。

解题步骤

  1. 原始矩阵正向化

  2. 正向矩阵标准化

  3. 计算得分并归一化

例题

帮助KUN哥选择对象,从A,B,C中。各项指标如下

候选人 颜值 脾气(争吵次数) 身高165 体重90-100
A 9 10 175 120
B 8 7 164 80
C 6 3 157 90

步骤一:矩阵正向化(得到下列矩阵)

矩阵正向化均使用下列规则
在这里插入图片描述

候选人 颜值 脾气(争吵次数) 身高165 体重90-100
A 9 0 0 0
B 8 3 0.9 0.5
C 6 7 0.2 1

步骤二:矩阵标准化(得到下列矩阵)

候选人 颜值 脾气(争吵次数) 身高165 体重90-100
A 0.669 0 0 0
B 0.595 0.394 0.976 0.447
C 0.446 0.919 0.217 0.894

步骤三:计算得分并归一化
结果【0.122,0.624,0.622】,Kun最终选择了B

代码

等学完再补充吧

三.层次分析法

适用范围

尤其适合于人的定性判断起重要作用的、对决策结果难于直接准确计量的场合。

解题步骤

  1. 构建目标层,准则层,方案层
  2. 将各种方案在各准则的得分进行归一化处理
  3. 构建判断矩阵
  4. 一致性检验
  5. 利用特征值法求权重
  6. 求出最终得分

例题

微博想要在A,B,C三个明星中选择一个为自己的app代言,数据如下。

候选人 粉丝数 颜值 作品质量 作品数量
A 6000W 10 6.5 25
B 3400W 6 8.1 46
C 5500W 8 7.5 31

步骤一:构建目标层,准则层,方案层
在这里插入图片描述
步骤二:将各种方案在各准则的得分进行归一化处理
将每个准则的得分除以该准则得分总和即可归一化
步骤三:构建判断矩阵
在这里插入图片描述
步骤四:一致性检验
利用最大特征值计算一致性指标CI,再通过查表得到平均随机一致性指标RI,最后计算二者比值,小于0.1则认为一致性检验通过。
C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n1λmaxn
C R = C I R I { 0 , 判断矩阵为一致矩阵 < 0.1 , 判断矩阵一致 ≥ 0.1 , 判断矩阵不一致 CR=\frac{CI}{RI}\quad\begin{cases}&0,&\text{判断矩阵为一致矩阵}\\&<0.1,&\text{判断矩阵一致}\\&\geq0.1,&\text{判断矩阵不一致}\end{cases}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值