洛谷P4727:图的同构计数(Polya引理)(dfs)

解析

《关于我想了半天 dp 结果看题解 dfs 就行这回事》
我就说 gcd ⁡ \gcd gcd 这玩意 dp 个锤子啊…
拆分数的增长速度远没有想像中那么大,事实上, n = 60 n=60 n=60 也就 1e6 左右。
据题解说,这玩意的增长速度仅有 O ( e n n ) O(\frac{e^{\sqrt n}}{n}) O(nen )
需要注重加强对常见数列增长速度的概念。

先钦定一个排列是 n ! n! n!,然后钦定不降的暴力枚举拆分 a 1... m a_{1...m} a1...m

注意到,暴力枚举排列会算重,比如 ( 1 , 2 , 3 ) (1,2,3) (1,2,3) 会当成 ( 1 , 2 , 3 ) , ( 2 , 3 , 1 ) , ( 3 , 1 , 2 ) (1,2,3),(2,3,1),(3,1,2) (1,2,3),(2,3,1),(3,1,2) 计算三次,但这些置换本质是相同的。
所以答案要除上 ∏ a i \prod a_i ai(题解的解释是先除阶乘,再乘圆排列,也是合理的)。

大小相同的循环前后顺序是无所谓的,也会重复计数,假设每个大小的循环为 c 1... k c_{1...k} c1...k,要再除一个 ∏ c i ! \prod c_i! ci!

dfs 跑的飞快。

另外本题考场即使 dfs 跑不完,只要能在可以接受的时间内(考试时间内)跑完,就可以打表勒。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
inline ll read(){
	ll x(0),f(1);char c=getchar();
	while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
	while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
const int N=2e6+100;
const int M=2e4+100;
const int inf=1e9;
const int mod=997;

int n;

int ksm(int x,int k){
	int res(1);
	while(k){
		if(k&1) res=res*x%mod;
		x=x*x%mod;
		k>>=1;
	}
	return res;
}
int gcd(int x,int y){
	return y?gcd(y,x%y):x;
}
int g[80][80],mi[N];
int ans,a[80],clo;
void calc(int k){
	++clo;
	int w(1),now(1),sum(1),s(1);
	for(int i=2;i<=k;i++){
		if(a[i]==a[i-1]) now++,s=s*now%mod;
		else{
			w=w*s%mod;now=s=1;
		}		
	}	
	w=w*s%mod;
	for(int i=1;i<=k;i++) sum=sum*a[i]%mod;
	int o(0);
	for(int i=1;i<=k;i++) o+=a[i]/2;
	for(int i=1;i<=k;i++){
		for(int j=1;j<i;j++) o+=g[a[i]][a[j]];
	}
	//for(int i=1;i<=k;i++) printf("%d ",a[i]);
	//printf("w=%d sum=%d o=%d\n",w,sum,o);
	ans=(ans+mi[o]*ksm(sum*w%mod,mod-2))%mod;
}
void dfs(int k,int lst,int lft){
	//printf("%d %d %d\n",k,lst,lft);
	if(lft==0){
		calc(k-1);return;
	}
	for(int i=lst;i<=lft;i++){
		a[k]=i;dfs(k+1,i,lft-i);
	}
	return;
}

signed main(){
	#ifndef ONLINE_JUDGE
	//freopen("a.in","r",stdin);
	//freopen("a.out","w",stdout);
	#endif
	n=read();
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++) g[i][j]=gcd(i,j);
	}
	mi[0]=1;
	for(int i=1;i<=n*n*n;i++) mi[i]=(mi[i-1]<<1)%mod;
	dfs(1,1,n);
	printf("%d\n",ans);
	//printf("clo=%d\n",clo);
	return 0;
}
/*
1
2
1 2
*/
 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值