P1815
P1488
思路:
之前看论文发现的一道题目
点的置换引起边的置换
1488是弱化版
直接套烧边引理显然是不科学的
写了一个Polya的暴力,复杂度是
O(n!n2)
跑不出n=10……
所以要考虑优化
首先肯定是要减少置换次数的
容易发现这n个点是“轮换对称”的,所以枚举每个循环的大小就可以了(顺便令循环大小递增)
然后把每个循环看成一个元素,然后在循环外部就变成了求重复元素排列
循环内部的话,因为是有向环,所以内部就是环形排列
这个爆搜一下发现
n=53
时方案数有30万种,
n=60
时有90万种
这样
O(n2)
验证的话就快多了
但是还是没法过……
于是对于1488我就打了个表……
哈哈reflash看到大家都是300B的代码,认为他们是推公式
1815就有点麻烦了
我们来分析一下如何用点置换快速求出边置换的循环节数
每条边的两个端点有两种关系
1.属于同一循环
2.属于不同循环
对于1情况,如果该循环大小为
siz
,我们发现循环节数实际是
siz2
枚举第一个点和其他点的边,会发现过1点的对称轴会把环分成两部分,我们只用考虑其中一部分就可以了,因为另一部分的对称点与1点连边会转回到这部分,即它们属于同一个循环,所以循环节数就是
siz2
感谢reflash的提醒,对于2情况,我们设这两个点置换的循环大小分别为
a,b
,显然两个点分别属于这两个置换的边置换循环节大小均为
lcm(a,b)=abgcd(a,b)
,属于这两个置换的边共有
ab
条,所以这两个点置换中的循环节数为
gcd(a,b)
了
暴力预处理
gcd
的话,每次求解可以做到
O(n2)
,虽然和原先的复杂度没有差别,但常数小,可以跑过
reflash通过
φ
来预处理两两
gcd
,但时间是我的两倍= =
总结一下,这道题属于同构计数问题,本质上和前面做过的置换群计数题目没有太大的不同,但优化的方法巧妙,需要仔细思考才能得出正确的答案
1488的代码我就不放了= =
1815
#include<cstdio>
using namespace std;
int mo,n,m,cnt,ans,da[65],fac[65],inv[65],gcd[65][65],qr[1775];
int GCD(int x,int y)
{
return y?GCD(y,x%y):x;
}
void dfs(int sum,int last)
{
if (sum==n)
{
int t=0,sum=fac[n];
for (int i=1;i<=da[0];i++)
sum=1LL*sum*inv[da[i]]%mo*fac[da[i]-1]%mo;
for (int len,i=1;i<=da[0];i=len+1)
{
len=i;
while (len<da[0]&&da[len]==da[len+1]) ++len;
sum=1LL*sum*inv[len-i+1]%mo;
}
for (int i=1;i<=da[0];++i)
{
t+=da[i]/2;
for (int j=i+1;j<=da[0];++j)
t+=gcd[da[i]][da[j]];
}
ans=(ans+1LL*sum*qr[t]%mo)%mo;
return;
}
for (int i=last;sum+i<=n;++i)
da[++da[0]]=i,
dfs(sum+i,i),
--da[0];
}
main()
{
scanf("%d%d%d",&n,&m,&mo);
fac[0]=1;
for (int i=1;i<=n;++i) fac[i]=1LL*fac[i-1]*i%mo;
inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1LL*(mo-mo/i)*inv[mo%i]%mo;
for (int i=2;i<=n;++i) inv[i]=1LL*inv[i]*inv[i-1]%mo;
for (int i=1;i<=n;++i)
for (int j=i;j<=n;++j) gcd[i][j]=gcd[j][i]=GCD(i,j);
qr[0]=1;
for (int i=1;i<=n*n;++i) qr[i]=1LL*qr[i-1]*m%mo;
dfs(0,1);
printf("%d\n",1LL*ans*inv[n]%mo);
}