【BZOJ1815&&BZOJ1488】有色图&&图的同构,Polya计数+暴力

P1815
P1488
思路:
之前看论文发现的一道题目
点的置换引起边的置换
1488是弱化版
直接套烧边引理显然是不科学的
写了一个Polya的暴力,复杂度是 O(n!n2)
跑不出n=10……
所以要考虑优化
首先肯定是要减少置换次数的
容易发现这n个点是“轮换对称”的,所以枚举每个循环的大小就可以了(顺便令循环大小递增)
然后把每个循环看成一个元素,然后在循环外部就变成了求重复元素排列
循环内部的话,因为是有向环,所以内部就是环形排列
这个爆搜一下发现 n=53 时方案数有30万种, n=60 时有90万种
这样 O(n2) 验证的话就快多了
但是还是没法过……
于是对于1488我就打了个表……
哈哈reflash看到大家都是300B的代码,认为他们是推公式
1815就有点麻烦了
我们来分析一下如何用点置换快速求出边置换的循环节数
每条边的两个端点有两种关系
1.属于同一循环
2.属于不同循环
对于1情况,如果该循环大小为 siz ,我们发现循环节数实际是 siz2
枚举第一个点和其他点的边,会发现过1点的对称轴会把环分成两部分,我们只用考虑其中一部分就可以了,因为另一部分的对称点与1点连边会转回到这部分,即它们属于同一个循环,所以循环节数就是 siz2
感谢reflash的提醒,对于2情况,我们设这两个点置换的循环大小分别为 a,b ,显然两个点分别属于这两个置换的边置换循环节大小均为 lcm(a,b)=abgcd(a,b) ,属于这两个置换的边共有 ab 条,所以这两个点置换中的循环节数为 gcd(a,b)
暴力预处理 gcd 的话,每次求解可以做到 O(n2) ,虽然和原先的复杂度没有差别,但常数小,可以跑过
reflash通过 φ 来预处理两两 gcd ,但时间是我的两倍= =
总结一下,这道题属于同构计数问题,本质上和前面做过的置换群计数题目没有太大的不同,但优化的方法巧妙,需要仔细思考才能得出正确的答案
1488的代码我就不放了= =
1815

#include<cstdio>
using namespace std;
int mo,n,m,cnt,ans,da[65],fac[65],inv[65],gcd[65][65],qr[1775];
int GCD(int x,int y)
{
    return y?GCD(y,x%y):x;
}
void dfs(int sum,int last)
{
    if (sum==n)
    {
        int t=0,sum=fac[n];
        for (int i=1;i<=da[0];i++)
            sum=1LL*sum*inv[da[i]]%mo*fac[da[i]-1]%mo;
        for (int len,i=1;i<=da[0];i=len+1)
        {
            len=i;
            while (len<da[0]&&da[len]==da[len+1]) ++len;
            sum=1LL*sum*inv[len-i+1]%mo;
        }
        for (int i=1;i<=da[0];++i)
        {
            t+=da[i]/2;
            for (int j=i+1;j<=da[0];++j)
                t+=gcd[da[i]][da[j]];
        }
        ans=(ans+1LL*sum*qr[t]%mo)%mo;
        return;
    }
    for (int i=last;sum+i<=n;++i)
        da[++da[0]]=i,
        dfs(sum+i,i),
        --da[0];
}
main()
{
    scanf("%d%d%d",&n,&m,&mo);
    fac[0]=1;
    for (int i=1;i<=n;++i) fac[i]=1LL*fac[i-1]*i%mo;
    inv[1]=1;
    for (int i=2;i<=n;++i) inv[i]=1LL*(mo-mo/i)*inv[mo%i]%mo;
    for (int i=2;i<=n;++i) inv[i]=1LL*inv[i]*inv[i-1]%mo;
    for (int i=1;i<=n;++i)
        for (int j=i;j<=n;++j) gcd[i][j]=gcd[j][i]=GCD(i,j);
    qr[0]=1;
    for (int i=1;i<=n*n;++i) qr[i]=1LL*qr[i-1]*m%mo;
    dfs(0,1);
    printf("%d\n",1LL*ans*inv[n]%mo);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值